PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Efficiency Metrics for Flocking with Implicit
Leadership

Oleg Maslennikov, Igor Komarov

ITMO University
Saint-Petersburg, Russia
osmaslennikov@corp.ifmo.ru, komarov@cit.ifmo.ru

Abstract—The purpose of this work is to present a novel
efficiency metric for flocking with implicit leadership. Five sets of
simulated experiments were conducted to compare proposed
metric with metrics existing in literature. Experiments were
executed in perfect and imperfect conditions, as well as in
presence of malicious agents. Proposed metric shows
dependencies similar to those of other metrics in perfect
conditions with average correlation coefficient of 0.77. Results in
imperfect conditions show that proposed metric can be used to
detect group fragmentation. Proposed metric can be used to
detect both kinds of studied malicious agents, as opposed to all
other studied metrics.

I. INTRODUCTION

Flocking is a widely observed in nature coordinated motion
of animals. Studies in biology showed large groups of animals
can move coherently as if they were a single organism [1], as
well as move in a specific goal direction even if only a minority
of the group is aware of this direction [2]. Studies also showed
that information in the group can be transferred explicitly [3],
[4], or implicitly without any signaling mechanisms

(2], [5].

In one of the first studies regarding flocking outside of
biology [6], flocking was defined as composition of three
simple concurrent behaviors: separation (avoiding collisions),
cohesion (staying close to neighbors), and alignment (heading
in the same direction as neighbors). Later works expanded this
concept by adding goal-seeking behavior [7], [8], and limiting
it to the minority of informed agents through algorithms of
implicit leadership [2], [9]. In [10] flocking with implicit
leadership is  defined as composition of three
behaviors:

e proximal control behavior (avoiding collisions and
staying close to neighbors);

e alignment behavior (heading in the same direction as
neighbors);

e goal-following behavior for informed agents.

Efficiency metrics are required to evaluate and compare
different flocking algorithms. These metrics should evaluate
system’s performance not only in perfect conditions, when
system is expected to perform well, but also in imperfect
conditions, as well as in case of malicious agents’ presence.
There are works [11-14] describing how flocking should be done
to avoid collapses in imperfect conditions, what threats exist to

systems, and how systems should be protected, but ways to
quantify efficiency of flocking are still needed.

II. RELATED WORK

Researchers and developers of flocking algorithms often
introduce their own efficiency metrics. Authors of one of the first
works in the field introduced concept of group accuracy [2].
Group accuracy was quantified as normalized angular deviation
of group direction around the preferred direction of informed
agents. While being relatively simple to calculate and able to
reflect efficiency of flocking in perfect conditions, the metric had
some major flaws outlined by experimental results provided by
authors of the original work: higher values of the group accuracy
were correlated to higher probability of group fragmentation, and
the metric often did not reflect malicious agents’ impact on the
group at all. Group accuracy also had little use for algorithm
comparison, because it did not represent speed.

In order to fix these flaws, more sophisticated metrics were
introduced in more recent works [9], [10], [15]. While fixing
some problems associated with group accuracy, these metrics
had their own flaws. Specifically, some of the most recent works
introduced metrics, which require information about heading of
every agent in the group, and cannot provide information about
group performance over time [9], [15].

Thus, the goal of this work was to develop a metric, which
does not have aforementioned flaws. Such metric had to satisfy
following criteria:

e can be used for algorithm comparison,

e provides information about group performance over
time,

e does not require information about every agent in the
group,

o reflects the impact malicious agents have on the group
performance

III. ALGORITHMS AND METRICS

Algorithms and metrics from three different works [2], [9],
[15] were analyzed in this paper together with one new metric.
In order to differentiate between these three algorithms, they
were given names corresponding to how these algorithms treat
proximal control behavior: prioritized proximal control
algorithm (PPCA) from [2], weighted proximal control
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algorithm (WPCA) from [9], and no proximal control algorithm
(NPCA) from [15]. Some of the equations used to define these
algorithms in original works were slightly transformed in order
to keep the notation constant throughout the paper.

These algorithms were studied for number of reasons:

e these are algorithms

leadership;

for flocking with implicit

these algorithms were already evaluated with the
metrics, used in this work;

these algorithms utilize three different approaches to
proximal control behavior;

these algorithms are also concerned with situation
when there are two or more conflicting goal directions,
with WPCA and NPCA having modified versions to
account for such situations.

Having two or more conflicting goal directions is considered
normal for these algorithms, so malicious agents acting as
informed agents with wrong goal direction can be harder to
detect. Because of that, it is important for efficiency metric to
reflect their impact on the system.

A. Prioritized proximal control algorithm

This algorithm’s key feature is prioritizing collision
avoidance above all else. Desired travel direction d;(t) of ith
agent at any given moment of time 7 is computed as following:

pi(@®) + () + wg;
lp; ) + b (t) + wg;ll

where p, h and g are vectors represent proximal control,
alignment control and goal direction respectively. Weighting
term w is used to express agent’s desire to follow goal
direction and will be referred to as “confidence degree”. The
value of p is based on relative positions of other agents in
communication range p, while & is computed as average
heading direction of these agents.

d;(t) =

If there are agents in collision-avoidance range o, proximal
control takes priority:

d;(t) =p;(®)
B. Weighted proximal control algorithm

WPCA utilizes artificial physics described in [16, 17] to
achieve flocking behavior. Every control step force vector is
computed as

f=ap+ph+ (a+pog

Values ¢ =1 and f = 5 were used in original work [9].
Computed force vector is then used to determine desired travel
direction according to the Newton’s second law of motion.

C. No proximal control algorithm

Last algorithm does not utilize proximal control behavior
at all [15]. At each time step desired travel direction is
computed as following:
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D. Metrics

1) Group travel accuracy: Introduced in [2], group travel
accuracy is quantified as normalized angular deviation of
group direction around the preferred direction of informed
agents. Group centroid coordinates are measured at 50" and
last step of simulation, difference between measurements is
then used as displacement vector. The angle between
displacement vector and goal direction serves as angular
deviation of group direction. Values are then normalized so
that no deviation corresponds to the value of 1, while deviation
met in groups moving chaotically corresponds to 0.

2) Order and instantaneous group accuracy: Two metrics
were used in [9]: order and accuracy. The order metric is used
to measure the angular order of the robots, groups with all
agents heading in common direction have higher order values.
The order is computed as:

_lal
N

where N is the total number of robots and a is the vectorial
sum of robots’ headings.

Accuracy is used to measure how accurately close to goal
direction robots are moving. Since it represents group
accuracy at one specific point of time, rather than performance
over time, it is referred to as “Instantaneous group accuracy”
later in the paper. The instantaneous group accuracy is
computed as:

B J2(1 = Ycos(£La— 2Zg))
2

3) Average heading accuracy: Average heading accuracy
is normalized version of metric used in [15]. First, average
error in heading direction within the group is computed. It is
then normalized in the same way as group travel accuracy.

6=1

4) Group kinetic efficiency: Designed to show how
efficiently group moves compared to a single informed agent
moving in the same direction. It is defined as inner product of
displacement vector and goal direction divided by the distance
traversed by a single informed agent within the same amount
of time:

s*g
e=—

ut
where # is maximum speed of an agent, ¢ is time passed

since the start of algorithm execution and s is computed as
difference between initial and final group centroid coordinates.

5) Group Elongation: Introduced in [2], elongation is not a
metric designed to evaluate group performance, and is not
studied as one in this work. It is referred in the work to explain
impact certain conditions have on the group. Group with
higher elongation has fewer agents getting information directly
from informed agents. Elongation was measured in the
original work by “creating a bounding box around the group
aligned with the direction of travel and calculating the ratio of
the length of the axis aligned with the group direction, to that
perpendicular to group direction. This value is 1 when both
axes are identical, > 1 as the group becomes more elongated
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in the direction of travel, and < 1 as it becomes elongated
perpendicular to the direction of travel.”

IV. SIMULATION METHODOLOGY

All experimental data in this research was gathered in a
simulated environment. All experiments were executed using
Octave v4 with different approaches depending on the
algorithm in use. These approaches were identical to the ones
described in original works [2], [9], [15]. In case of simpler
PPCA and NPCA, every agent was represented by a point in
2D-space with certain properties, changing according to
algorithm within the limitations described in [2], [15]. In case
of WPCA, more sophisticated approach of artificial physics
described in [16], [17] was used.

Each agent is modeled with following properties:

e position ¢,

e velocity v,

e maximum speed u,

e goal direction g,

confidence degree w,

e communication range p,

e collision-avoidance range a

Every experiment starts with N agents being randomly
distributed within a circle of radius R. Some number of agents
N, has information of goal direction g and predefined
confidence degree w, which does not change throughout the
course of simulation. Agents then execute one of three
flocking algorithms for # time steps, and efficiency values are
recorded after that.

V. EXPERIMENTAL SETUP

To evaluate efficiency metrics described in section III, five
sets of experiments were conducted. First set is conducted in
perfect case scenario, when system is known to perform well.
Second and third sets were carried out to gauge the effect
varying time ¢ and radius R has on the efficiency. Last two sets
are concerned with malicious agents’ impact on the system in
different attack scenarios. In all experiments amount of agents,
maximum speed, communication range and collision-
avoidance range were constant and set to:

e N =050,
e N, =10,
e u=1,
e p=30,
e a=>5.

A. Perfect case scenario

In perfect case scenario agents are distributed within a
circle R = 10 and then execute flocking algorithm for 500
simulation steps. In this set, impact of the confidence degree w
on the efficiency was studied. For each value of w =
0.05,0.1,0.15,.., 2 there were 300 replicates (100 for each
algorithm).

Perfect-case scenario is studied for two reasons. First, these
experiments provide results which can be directly compared to
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already existing results obtained in original works [2], [9],
[15], in order to evaluate simulated environment. Secondly,
impact of varying confidence degree w on these algorithms’
performance is already thoroughly studied. Because of that,
proposed metric should show similar dependencies, to be
considered applicable. To evaluate the similarities between
existing metrics, and kinetic efficiency, correlation
coefficients were calculated.

B. Imperfect conditions

In second and third sets higher simulation durations and
distribution radiuses were studied. In both sets informed
agents had a confidence degree of 2.00, and other parameters
were identical to perfect case scenario. In second set different
simulation durations from 500 to 2500 with 500 increments
were studied with 300 replicates for each value. In third set
distribution radius R varied from 10 to 50 with increments of
10 and 300 replicates for each value.

B. Malicious agents

Last two sets of experiments are performed once again in
perfect conditions with confidence degree of informed agents
being w = 0.5. However, in these experiments some agents
are malicious and act as informed agents with different goal
direction. In 4™ set there are 10 malicious agents with goal
direction orthogonal to that of informed agents and confidence
degree of 0.5. These malicious agents also change their
confidence degree t* steps before the end of execution. Values
(0, 10, 50, 100, 200) of t* were studied in this set of
experiments with 300 replicates for each value.

In 5™ set, malicious agents try to slow the group down by
moving at the speed 4 times lower than regular speed. In this
set, amount of malicious agents is varied from 0 to 25 with
increments of 5.

VI. RESULTS

Results in perfect conditions are shown in Fig.1. Metrics
can be divided into two different categories. First category,
later referred to as “metrics of overall performance”, is
represented by group travel accuracy and kinetic efficiency.
These metrics reflect group performance over the entire time
of algorithm execution. Metrics of instantaneous performance
in the second category, instantaneous group accuracy and
average heading accuracy, only provide data about group state
at one particular moment of time.

In case of algorithms with proximal control, group
becomes more spread out with the course of time, and
informed agents can reach fewer agents with messages.
Because of that, uninformed agents are not perfectly aligned at
the end of algorithm execution, and metrics of instantaneous
performance rate these algorithms lower.

No proximal control algorithm’s efficiency is close to 1,
according to all studied metrics except for kinetic efficiency.
Kinetic efficiency reflects that not all agents are perfectly
aligned at the start of simulation.

Kinetic efficiency shows dependencies similar to those of
other metrics, with average correlation coefficient of 0.77277,
according to Table I. The only exception is WPCA where
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metrics of overall performance differ from metrics of
instantaneous performance. Average correlation coefficient
between kinetic efficiency and group travel accuracy is
0.96401.

If agents execute the flocking algorithm for longer periods
of time, probability of group fragmentation increases [2]. In
case of PPCA, uninformed agents just stop moving if they get
left behind, while WPCA agents wander off in random
direction. Because of that, group travel accuracy cannot be
used for fragmentation detection in groups running PPCA
(Fig. 2a).
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Fig. 1. Effect of varying confidence degree for different algorithms: (a)
prioritized proximal control; (b) weighted proximal control; (¢) no proximal
control

TABLE I. CORRELATION COEFFICIENTS BETWEEN KINETIC EFFICIENCY AND
OTHER METRICS FOR DIFFERENT ALGORITHMS

Instantaneous Aver?ge Group travel
Name group accuracy heading accuracy
accuracy

Prioritized

proximal 0.99798 0.99533 0.95701
control

Weighted

proximal -0.028711 0.407299 0.954568
control

No proximal 0.84552 0.84552 0.98044

control
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Fig. 2. Effect of varying execution time for different algorithms: (a) prioritized
proximal control; (b) weighted proximal control

In the case of WPCA, uninformed agents continue moving
after getting separated from the main group. After separation,
these agents try to align themselves with other separated
agents in the neighborhood. After this initial alignment phase,
agents don’t change their travel direction and just continue to
move away from the group. Because of that, metrics of overall
performance decrease if the group was fragmented for longer
periods of time, while metrics of instantaneous performance
only decrease as fragmentation probability increases.

The same problem can be observed, if the group executing
WPCA is initially more spread out (Fig. 3). As the distribution
range increases, group elongation also increases, which results
in more agents not getting messages directly from informed
agents. Because of that, these agents tend to deviate from goal
direction more than the ones closer to informed agents, and
move slower in a goal direction overall That causes other
agents to deviate too, due to proximal control behavior. Group
travel accuracy does not decrease for more spread out groups,
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while other metrics indicate that agents are less aligned with
respect to the goal direction and move slower in this
direction.

Malicious agents can hide their impact on the group, if
certain efficiency metrics are being used. Malicious agents can
act as informed agents with wrong goal direction, but switch to
acting uninformed some time prior to efficiency evaluation. In
that case, results vary between metrics of overall performance
and metrics of instantaneous performance (Fig. 4).
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algorithm
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uninformed mode and end of execution for prioritized proximal control
algorithm

If malicious agents do not try to hide their presence in the
group (dt = 0), all efficiency metrics have significantly lower
values (Table II) compared to perfect case scenario (dt = 500).
As the timeframe between malicious agents’ switching to
acting uninformed and efficiency evaluation increases, metrics
of instantaneous performance quickly rise to their perfect-case
values, while metrics of overall performance show almost
linear dependencies. If malicious agents switch to uninformed
state 200 time steps before efficiency is evaluated, relative
difference (as compared to perfect case scenario) is 0.0133 for

instantaneous group accuracy and 0.016222 for average
heading accuracy. These results show that malicious agents
can affect the group for 60% of algorithm execution time and
have very little impact on metrics of instantaneous
performance. Metrics of overall performance can be used to
show the impact of malicious agents: relative change is -0.268
in group travel accuracy and -0.156 in kinetic efficiency.

TABLE II. RELATIVE CHANGE IN EFFICIENCY CAUSED BY MALICIOUS AGENTS
TRYING TO CHANGE GROUP TRAVEL DIRECTION

Instantaneous Aver?ge Group Kinetic

dt heading travel -

group accuracy efficiency
accuracy accuracy

200 -0.013 -0.016 -0.268 -0.156
100 -0.051 -0.058 -0.397 -0.207
50 -0.081 -0.096 -0.457 -0.239
10 -0.133 -0.2 -0.474 -0.237
0 -0.207 -0.316 -0.469 -0.233

Relative difference in this case exceeds 0.01 only after
amount of malicious agents becomes greater than amount of
informed agents (Table III). Results show, that decreasing the
speed of uninformed agents has greater impact on the system
performance than decreasing the speed of all agents. If 25
agents (half of all agents, and 0.625 of uninformed agents) are
malicious, the group covers 8 times shorter distance, compared
to perfect-case scenario. Results provided in Table II and
Table III show that kinetic efficiency is the only studied metric
that gets significantly impacted by both kinds of malicious
agents, as opposed to other studied metrics.
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TABLE III. RELATIVE CHANGE IN EFFICIENCY CAUSED BY MALICIOUS
AGENTS TRYING TO SLOW THE GROUP DOWN

Instantaneous Aver'flge Group travel Kinetic
N roup accurac heading accurac efficienc

group accuracy accuracy uracy y
5 -0.092 -0.085 0.005 -0.108
10 -0.222 -0.26 -0.007 -0.282
15 -0.354 -0.479 -0.014 -0.558
20 -0.477 0.711 -0.042 -0.767
25 -0.526 -0.817 -0.128 -0.87
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VII. CONCLUSION

In this paper, new flocking efficiency metric, called kinetic
efficiency, was proposed. Proposed metric is used to evaluate
group performance over time, and requires only group centroid
coordinates to be computed, as opposed to more sophisticated
metrics requiring heading directions of each agent.

Five sets of experiments were conducted to compare
proposed metric with other metrics used in literature. First set
was executed in perfect conditions, and it proved that kinetic
efficiency reflects group performance over time. Kinetic
efficiency also shows dependencies on the confidence degree
similar to other metrics’. Second and third set were executed
in imperfect conditions, where probability of group
fragmentation is higher and overall performance should be
lower. According to the results, kinetic efficiency can be used
to detect group fragmentation and decreases in imperfect
conditions. Last two sets of experiments were executed in
presence of malicious agents. In the 4" set, malicious agents
tried to change group travel direction by acting as informed
agents with different goal direction. In the 5™ set, malicious
agents tried to slow the group down by simply moving slower.
Results show that kinetic efficiency is the only metric out of
four studied metrics that can be used to detect both kinds of
malicious agents.

Experimental results show that proposed metric can be
used to evaluate system efficiency in both perfect and
imperfect conditions, as well as to detect presence of various
kinds of malicious agents. However, it should be noted that
algorithms which score higher with existing efficiency metrics
often reduce importance of proximal control and collision
avoidance, which may result in reduced stability due to robots
colliding into each other, and proposed metric does not reflect
probability of collision in any way either.

The presented work can be extended in many ways. First,
collision probability can be studied to determine whether
existing metrics can reflect collisions’ impact on the system.
Secondly, more complete experimental scenarios may include
more algorithms studied, including algorithms without implicit
leadership and self-adaptive algorithms; other kinds of
malicious agents and imperfect conditions. Experimental setup
might also include real robots instead of simulation. In this
case, simplicity of a metric becomes a key factor: some
metrics might become difficult or impossible to evaluate in a
realistic scenario.
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