PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Remote Networking Technology for I0T:
Cloud-based Access tor AllJoyn-enabled Devices

Pavel Masek, Radek Fujdiak, Krystof Zeman, Jiri Hosek

Brno University of Technology
Brmo, Czech Republic

{masekpavel, fujdiak, hosek } @feec.vutbr.cz, krystof.zeman@phd.feec.vutbr.cz

Abstract—The Internet of Things (IoT) represents a vision
of a future communication between users, systems, and daily
objects performing sensing and actuating capabilities with the
goal to bring unprecedented convenience and economical benefits.
Today, a wide variety of developed solutions for IoT can be
seen through the all industry fields. Each of the developed
systems is based on the proprietary SW implementation unable
(in most cases) to share collected data with others. Trying to
offer common communication platform for IoT, AllSeen Alliance
introduced AllJoyn framework — interoperable platform for
devices (sensors, actuators, etc.) and applications to communicate
among themselves regardless of brands, transport technologies,
and operating systems. In this paper, we discuss an application
for remote management of light systems built as an extension
of AllJoyn Framework — developed application is independent
on communication technologies (e.g., ZigBee or WiFi). Besides
provided communication independence, the presented framework
can run on both major SoC architectures ARM and MIPS. To
this end, we believe that our application (available as open source
on GitHub) can serve as building block in future IoT / Smart
home implementations.

I. INTRODUCTION

The Internet of Things (IoT) is currently a widely used
term, which comprises large amount of concepts — Wireless
Sensor Networks (WSN), Machine-to-Machine (M2M) com-
munications or Low power Wireless Personal Area Networks
(LoWPAN) [1]. According to forecast from leading telecom-
munication companies as Cisco [2] and Juniper [3], the M2M
connections will grow from 495 million in 2014 to more than
3 billion in 2019. Today, we can see a wide variety of smart
devices (e.g., smart meters, sensors, actuators) coming on the
market in waves and trying to bring intelligent behavior into
today’s households. Each device is equipped with proprietary
software implementation which makes difficult to activate
cooperation between group of devices. Hence, there is a crucial
need to develop communication platform merging majority of
smart devices and so providing desired interoperability.

Question of developing universal platform integrating all
sensors and actuators under one system can be further divided
into two parts: (i) hardware and (ii) software. Development
of universal device called smart home gateway (SH-GW) or
Machine-type Communication Gateway (MTCG) is described
in detail in literature [4], [5] — HW board solution capable
to control information from sensors and actuators in home is
discussed. Dealing with the software implementation, several
application frameworks were developed during last few years.
Over this time, two frameworks emerged as major platforms

Ammar Muthanna
State University of Telecommunication
St. Petersburg, Russia
ammarexpress @gmail.com

(i) OSGi Framework [6] and (ii) AllJoyn Framework [7]. To
provide insight into the main principles of these frameworks,
description of those two representatives is given in the follow-
ing section.

In this paper, we focus on the remote control system for
light sources from the viewpoint of developing the extension
module for AllJoyn Framework, see Fig. 1 representing the
AllSeen Alliance vision of Smart Home [8].

@A—- e IoT
(S .]I ":-.
™\ l—!@
\

AllJoyn

Light Systems

Fig. 1. AllSeen Alliance vision for Internet of Things using the
AllJoyn framework — provides a special AllJoyn routing node for
secure and manageable connections with external network devices
and services in IoT domain

Particularly challenging task in this context, powered by
the recent progress in affordable CPU and memory capacity of
home IP routers [9], brings the unified functionality of remote
controlling for wide spectrum of use-cases in (smart)home / loT
domain. Therefore, we introduce the extension for AllJoyn
Framework suitable for various communication technologies
used in today’s households — on the top of it, the functionality
was tested on the IP router TP-LINK TL-WDR4300 running
OpenWRT 14.07 operating system which can be taken into ac-
count as a classical representative of home IP routers. Further,
we expand our vision of control system on remote management
by using cloud entity — enabling the communication between
the public network (Internet) and smart devices located behind
the edge IP device (creating LAN (Local Are Network) with
NAT (Network Address Translation) service).

The rest of the paper is organized as follows. Section II
provides the description of available frameworks (including
AllJoyn, OSGi) dealing with the application “middle-ware”
layer enabling communication between different devices. Fur-
ther, in Section III we discuss in detail the communication

ISSN 2305-7254

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

chain for remote management using the AllJoyn Gateway
Agent. Created module (application) for Gateway Agent to-
gether with the description of realized testbed scenario are
provided in Section 1V. Finally, the lessons learned and con-
clusions are summarized in Section V.

II. FRAMEWORKS FOR IOT DOMAIN

It becomes more and more obvious that to meet the loT
vision, provided solution capable to act as IoT framework has
to enable more than visualization platform or database for
obtained M2M data. To provide a comprehensive package for
IoT, additional requirements as (i) type o communication (one-
directional, bi-directional), (ii) communication protocols (on
application and transport layer), and (iii) security (encrypted
communication) should be implemented. Today’s MTCGs
support variety of communication protocols, so called IoT
protocols (Constrained Application Protocol (CoAP), Message
Queue Telemetry Transport (MQTT), Data Distribution Ser-
vice (DDS), Session Initiation Protocol (SIP), etc.), which
differ in many aspects from legacy transport protocol like
a TCP/UDP. In addition to providing basic connectivity,
IoT protocols should be able to inter-connect and handle
communication between smart devices. Following this fact,
two cornerstones enabling the development of applications
have been formed over the last decade (i) OSGi framework
and (i) AllJoyn framework — for a better overview, Table I
categorizes frameworks and protocols by most representative
TCP/1IP layer, where specific platform operates [1].

TABLE 1. FRAMEWORKS AND PROTOCOLS CATEGORIZED BY
COMMUNICATION TCP/IP LAYERS [1], [10]

| Layer | Frameworks/ Protocols |
Application IPSO Alliance, Xively, Cumulocity, Thing-Worx, Smart Encrgy
Profile (SEP) 2.0, OSGi Alliance, AllSeen (AllJoyn), Microsoft,
IBM, IoTivity, IzoT
Transport TCP, UDP, WirelessHART, SMS (IMS)
Network 1P, ZigBee

The centralized frameworks mentioned in Table I imple-
ment protocol flexibility and usually support application pro-
tocols MQTT, REpresentational State Transfer (REST), CoAP
and Extensible Messaging and Presence Protocol (XMPP).
Table II contains the comparison of the frameworks against
common (application) protocols supported.

TABLE II. COMMUNICATION PROTOCOLS SUPPORTED BY THE
STUDIED FRAMEWORKS [1], [10]

| | MQTT [XMPP | CoAP | REST | Other | Modular |

IPSO Alliance 4 v
Xively v v 4 4
Cumulocity v
Thing-Worx v v 4 4
SEP 2.0
OSGi All.
AllSeen All 4 4 4 v
Microsoft
IBM
IzoT v

v

AN

NENENPUENEN N
<

201

Under the “Other column”, proprietary protocols (i.e.,
DDS) are included. Column “Modular” means that the real
implementation is left to the developers (selection of applica-
tion/ transport protocol, etc.).

Many of the frameworks are proprietary. On the other hand,
most of them support at least one open source messaging
protocol. TIPSO Alliance, AllJoyn, OSGi and loTivity are
based on open-source technologies. IBM and Microsoft are
proprietary. The platforms such as Thing-Worx, Xively and
Cumulocity are proprietary and so porting an application from
one to another would be a costly exercise.

Some of the frameworks such as, loTivity, OSGi and
AllJoyn support a dual stack implementation, enabling a re-
duced functionality stack for constrained (embedded) devices.
However this is not always the case, such as Xively, Cu-
mulocity and Thing-Worx do not support constrained devices
and rely on intermediary agents or gateways - therefore these
frameworks do not represent the vision of the comprehensive
IoT framework.

Rapid application development, (re-)configurability, scala-
bility and deployment considerations are important character-
istics. It is difficult to make evaluation on such aspects, but it
is worthy to mention frameworks with comparative strengths.
IBM and Microsoft’s strong background in enterprise service
bus means that they have a good advantage of upscaling as
business needs grow. Thing-Worx, Cumulocity and Xively
demonstrate strength in rapid application development and
focus on value added work. IoTivity, OSGi and AllJoyn tend
to focus on customers using commercial off the shelf devices
and therefore simplify the deployment. Arrowheads strength
lies in its re-configurability through the utilization of dynamic
orchestration of services and systems.

A. OSGi framework

The Open Services Gateway Initiative (OSGi) [6] attempts
to meet requirements as platform and vendor independence
as well as architecture openness by providing a managed,
extensible framework to connect various devices in a local en-
vironments such as home, office, or car. By defining a standard
execution environment and service interfaces (framework),
OSGi promotes the dynamic discovery and collaboration of
devices and services from different sources.

OSGi service platform is an instantiation of a Java virtual
machine (JVM) complemented by a set of bundles (packages
providing different functionality), see Fig. 2. Running on top of
JVM, the framework provides a shared execution environment
that installs, updates, and uninstalls bundles without a need to
restart the system. Bundles can collaborate by providing other
bundles with application components called services [10].

Since frameworks based on OSGi API are highly emerging
especially in specific area of IoT (M2M communication), the
number of OSGi Frameworks is growing as well. The list
of most popular OSGi frameworks contains: (i) Apache Felix
(Open source) [11], (ii) Eclipse Equinox (Open source) [12],
(iii) Hitachi (Commercial), (iv) Knopflerfish (Open source)
[13], and (v) ProSyst (Commercial) [14] — detailed evaluation
of those frameworks is provided in [10].

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

o
&
b=
; System Services E’f
J OSGi Framework
C/C++ 1;1 c.g., Java ME CDC, SE, EE
Java Runtime Environment
% e.g., Windows, Linux, QNX
2 5}
= . >
A Opcrating Systems 5
195}
Hardware

Fig. 2. OSGi Service Gateway Architecture [6]

B. Alljoyn framework

AllJoyn represents an open-source software system that
provides an environment for distributed applications running
across different type of devices and operating systems [7].
AllJoyn is ”platform-neutral” framework, meaning it was de-
signed to be as independent as possible of the specifics of the
hardware configuration and operating system of the targeted
device — framework was developed to run on Windows, Linux,
Android, i0S, OS X, and OpenWRT.

1) Apps and Routers: The AllJoyn framework comprises
AllJoyn Apps and AllJoyn Routers including mutual commu-
nication between both components. Apps can only commu-
nicate with other Apps by going through a Router. In real
implementation, Apps and Routers can be implemented on the
same physical device, or on different devices — three possible
topologies exist, see Fig. 3 [7]:

e App uses its own Router - in this case, the Router
is called a “Bundled Router” as it is bundled with
the App. AllJoyn Apps on mobile OS like Android
or i0S and desktop OS like Mac OS X and Windows
generally fall in this group.

e Multiple Apps on the same device use one Router
- the Router is called a ”Standalone Router” and it
typically runs in a background/ service process. This is
common on Linux systems where the AllJoyn Router
runs as a daemon process and other AllJoyn apps
connect to the Standalone Router. In case of multiple
apps on the same device, the common AllJoyn Router
is utilized and, as the result, such device consumes
less overall resources.

e App uses a Router on a different device - embedded
devices (which use the thin variant of the AllJoyn
framework, more on this later) typically fall in this
camp as the embedded device which typically does
not have enough CPU and memory to run the AllJoyn
router.

2) Transport technologies: The AllJoyn framework runs
on the local network (behind the NAT). It currently supports
WiFi, Ethernet, serial, and Power Line (PLC) communication
technologies, but since the AllJoyn software was written to be

202

Embedded
Device
App Elnbe(.lded
Device

Mobile

APP | App / App

Router /

Router

App Router \

App

Router

App

Fig. 3. Network arcitecture of AllJoyn framework [8]

transport-agnostic and since the AllJoyn system is an evolving
open-source project, the support for more transport means is
scheduled to be added in the future by community.

Additionally, complementary software can be created to
bridge the AllJoyn framework to other systems like ZigBee,
Z-Wave, or the cloud. In fact, AllSeen Alliance is currently
working on adding a Gateway Agent as a default AllJoyn
service — see Section III for detail description.

C. Software architecture

The AllJoyn Service Frameworks implement a set of com-
mon services, like notification, or control panel [7]. By using
the common AllJoyn service frameworks, apps and devices can
properly inter-operate with each other to perform a specific
functionality. The AllJoyn framework provides two possible
variants, see Fig. 4:

e Standard core - targeted for non-embedded devices
(e.g., Android, iOS or Linux).

e Thin core - for resource constrained (embedded)
devices (e.g., Arduino, Intel Edison, ThreadX).

AllJoyn Standard AllJoyn Thin

Application Application
App Code App Code
AllJoyn Standard AllJoyn Thin

Service Frameworks Service Frameworks

AllJoyn Thin

Core Library
AllJoyn Router

Fig. 4. SW architectures of AllJoyn framework [8]

AllJoyn Standard
Core Library

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Typically, developed applications will be written using the
AllJoyn Service Framework APIs so that the applications can
be compatible with devices using the same Service Frame-
works. Only by using AllJoyn Service Frameworks developed
by AllSeen Working Groups [15] the application will be
compatible with other applications and devices in the AllSeen
ecosystem.

III. COMMUNICATION LOGIC USING GATEWAY AGENT

In our created application, we have focused our attention to
extend the functionality of AllJoyn framework. The connector
for communication between internal distributed communica-
tion bus (DBus) and remote devices located outside the home
(local) network was developed.

To meet the required remote and secure connection, the
node called Gateway Agent was defined as a special AllJoyn
routing node for secure and manageable connections with
external network devices and services, see Fig. 7. AllSeen
Working Group [15] is currently working on adding a Gateway
Agent as a standard AllJoyn service. However, since the
implementation is still in progress, we have created our own
instance of Gateway Agent — source codes are available on
GitHub [16]. Key features of the Gateway Agent are listed
bellow:

e Remote access and management - provides a stan-
dard and secure method for connecting local AllJoyn
devices and applications to one or more external
services through which users and service providers
can access and manage AllJoyn-enabled devices and
applications.

e Security and data privacy - AllJoyn’s end-to-end en-
cryption keeps communications secure. Fine-grained
controls let users decide which AllJoyn enabled de-
vices and applications have access to and from user-
approved cloud-based services.

e Interoperability - a standard API extends the interop-
erability already provided by AllJoyn to fully embrace
external networks and remote services, by supporting
plug-in protocol connectors into a standard AllJoyn
Gateway Agent API enabling secure inter-networking
to cloud services, PAN and wireless technologies
(including Bluetooth, ZigBee and Z-Wave) and other
networks.

e Support for open standards - connectors provide
connectivity, interaction and integration over a variety
of protocols including REST, XMPP, MQTT and TR-
069.

Communication scheme of created solution is depicted in
Fig. 7. We have selected the IP router TP-Link TL-WDR
4300 as a representative of ’low-cost” solution for households
capable to run OpenWRT operating system - in our work,
OpenWRT Barrier Breaker 14.07 was used. For purpose of
compilation of various packages, we extended the internal
storage by FLASH storage (using the extroot command).
The installed software part provided by AllJoyn framework
is represented by (i) AllJoyn daemon (basic shared bus; run
on startup), (ii) Lightning controller service (management,
discovery and control of light sources), and AllJoyn Gateway
Management App (management of connectors) — the selected

203

modules during the compilation process (make menuconfig
command) on the TP-Link router are displayed in Fig. 5.

- alljoyn AllJoyn Peer-to-Peer networking
-k 1ljoyn-about........ .. AllJoyn - About service library (deprecated)
< > ULJOYN-C Lot fa s oo L aie m s b s ks o i dis hisiata e e s S e AllJoyn - C binding
=#= alljoyn-eonflg.. ... e e e aisi i AllJoyn Config service library
=i j ... AllJoyn ControlPanel service librar

....................... AllJoyn Lighting

< > 11joyn-non-gw-config... AllJoyn - alternate non-Gateway Config
%o Lljoyn-notification..........c..... AllJoyn Notification service library
= 1ljoyn-sample_apps... AllJoyn services sample_apps - sample applications
< > LLJOyN=SAMPLES. L. chuveissivossnssctnsibribonne AllJoyn - testing samples
-k 1ljoyn-services_common.......... AllJoyn Services Common service library

Fig. 5. Selection of AllJoyn modules during the compilation of
OpenWRT OS for IP router TP-Link TL-WDR 4300

Mentioned AllJoyn modules enable the space for develop-
ment of new services. In our project, we focus on develop-
ment of connector which allows remote management of light
sources. This connector listens on distributed AllJoyn DBus
and in parallel is connected to remote control application — in
our case represented by Twitter API.

IV. IMPLEMENTATION OF REMOTE MANAGEMENT
A. AllJoyn-enabled light bulbs application

We have decided not to test the created connector with
real devices (rely on specific communication technology) but
we have verified all functions with our software application
(for Android version 5.0 (API 21) and higher; tested on
Samsung Galaxy S4) in role of virtual light bulb. Created
tool simulates a lamp running the AllSeen Alliance’s Open
Source AllJoyn Lighting Service Framework (LSF) including
an embedded instance of Lighting Controller Service, see Fig.
6. Application exposes Lighting Controller Service API’s that
can be controlled via the AllJoyn-based Lighting SDK [7].

& = all 24%020:59 [o ¢

‘ ’IAMP\HFO

Lamp Name

& = all 24%0 20:59

O LSF Sample App

LAMPS (1)

Luminaire-864cf |o|

@ Properties

139°
84%
— 3263K

Lumens
Energy usage

Lamp details

Fig. 6. Updated LSF application by adding capabilities to com-
municate with device located outside the home network. Initial
functionality allows internal communication only. Source codes for
simple LSF application are provided by AllSeen Alliance

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

/@ WiFi Conuection Local Network 23 Internal DBus Communication
% Cellular Connection Public Network (Internet) @ Implemented Controllers
Twitter

TP-LINK TL-WDR4300 Cloud Server

AllJoyn Gateway —i__ Drofile | AllJoyn Gateway
Management App Connector(s) Verification

AllJoyn Library —L_Cfgfi_gl_l@ii(_)n_:l AllJoyn Library
4

Eoy AllJoya 7

Distributed Bus (DBus) Gateway
L2 LA 4 Agent User's Tweets
—! Access Rights i iochting
AllJoyn Router b m - é"olgtltlﬁg
(AllJoyn Daemon) ntroter
Service
SoC (ARM or MIPS architecture) running Open WRT OS Android OS

T, 2

AllJoyn Lighting

Controller ~
AllJoyn Gateway A
Controller
AllJoyn Lighting Remote App
Thin Client Twitter
(SW bulb)

Fig. 7. Considered communication structure using the AllJoyn Gateway Agent

B. Gateway agent connector C. Application for remote control

Connector for Gateway Agent was written in C++ pro- As an application platform for remote controlling, we have
graming language together with additional scripts created in decided to use one of the most popular social application
Bash. As the first step, new distributed bus (DBus) for the Tivitrer. Following the requirements given by the Twitter REST
purpose of connector was created — this allows the intercon- API [17], the message length is restricted to 140 characters. To
nection with the main DBus defined by AllJoyn framework. meet this condition, we have created the new message format

— for our application:
Listing 1: New DBus

BusAttachment bus ("Connectorapp", true); Listing 3: Message Format
QStatus status = bus.Start ();
status = bus.Connect () ; AllJoynL<command> lampID=<id> onOff=<state> hue=<state>
saturation=<state> colorTemp=<state> brightness=<state>

Event handling is managed by the method “LampState-
ChangedCB” in class “LampManagerCallbackHandler”. This e AlllyounL - determinates whether it is an incoming
method is activated when the bulb’s status is changed. command to get status (info) of bulb(s) (AllJoynLS)

— or command to change parameters (AllJoynLC).
JamplD - defines the bulb 1D (uin(32_0),
onOff - bulb status (1) On (1), (i1) Off (0).
hue - hue definition in range 0 to 360.
_)) saturation - bulb saturation in percents.
ControllerClient client (bus, controllerClientCBHandler);

LampManager lampManager (client, lampManagerCBHandler); colorTemp - light temperature defined in Kelvin in
ControllerClientStatus cstatus = client.Start(); range 2700 to 5500.

while (!connectedToControllerService) { . . .
printf ("waiting"); e Dbrightness - key parameter of brightness, defined in

sleep (1); percents.

ControllerClientCallbackHandler controllerClientCBHandler;
LampManagerCallbackHandler lampManagerCBHandler;

}
lampManager .GetAl1LampIDs () ; . The example of running Twitter application is depicted in
CONTROLLER_CLTENT_OK; Fig. 8. Messages are sent to the Gateway Agent where the
created connector is processing the received data. Further, data

cstatus
cstatus

204

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

is sent via the DBus to Alljoyn router daemon. In the final
phase, data is sent over the used communication technology
(in our case WiFi) to destination node (lamp represented by
SW tool), see Fig. 9.

Q = il 57% M) 19:56

Q & il 58% M) 19:50

n AllJoynLS
lampID=ec0cb0300e80640cf00

0000000000000 onOff=1
hue=210 saturation=70

colorTemp=3000 brightness=80 e

u AllJoynLC
lampID=ec0cb0300e80640cf00

Lamp name Luminaire-864cf

0000000000000 onOff=1 Dower
hue=210 saturation=70 Brightness
colorTemp=3000 brightness=80 s

Saturation b
Color Temp 3000

Lumens 720.0 lumens

Co se prave déje?

Fig. 8. Example of “tweets”
with created message format

Fig. 9. Processed “tweets” on
the side of SW bulb

V. LESSONS LEARNED AND CONCLUSIONS

In this final section, we discuss the important aspects that
we have been facing during the prototype implementation,
as well as outline our conclusions. Within the process of
development of the connector for AllJoyn Gateway Agent, we
have addressed a number of challenges — mostly due to the
fact, that structure (modules and classes) of AllJoyn framework
was changing frequently (development procedure on monthly
basis). Therefore, we had to create our code as general as
possible.

In particular, we had to adapt to the fact that core AllJoyn
framework is written in C++ programing language. On the
other hand, the thin client (our created software bulb) has
to be written, due to several limitations from the side of
AllJoyn framework, in C. Although the AllJoyn framework
and two additional modules (AllJoyn Gateway Agent and
AllJoyn Lighting Service Framework (LSP)) are available
for compilation on IP routers running OpenWRT this is not
sufficient for our use case. Due to the missing integration
between mentioned parts, there is a need to create an extension
of AllJoyn Gateway Agent — communication bridge for internal
and external network. Our developed extension comprises all
mentioned parts and enables possibility to build our created
Gateway Agent connector with libraries provided as a part of
AllJoyn framework.

Our main and the most essential learning while working
with the AllJoyn framework is such that source codes, pre-
compiled and distributed as AllJoyn framework and provided
directly by AllSeen, are ready to be operated on today’s
IP routers running OpenWRT operating system. Further, we
proved that framework is truly platform independent — both
major architectures of IP routers available on market (ARM
and MIPS) are supported. In our case, we have used the TL-
WDR4300 router form TP-LINK running latest OpenWRT
14.07 (Barrier Breaker) - MIPS architecture.

To prove the functionality of developed connector, we
have created the software tool that simulates a lamp running

205

the AllSeen Alliance’s Open Source AllJoyn Lighting Service
Framework. Application was controlled remotely (from ex-
ternal network) by commands sent via Twitter. To this end,
we implemented new message format for sending commands
“tweets” (similar to getters and setters) — limited messages to
length 140 characters. Since the created solution is network-
independent, our connector/SW lamp can run over Wi-Fi, Wi-
Fi Direct, Ethernet, PLC, Bluetooth, and other communication
technologies.

Finally, we can conclude that today’s ”low-cost’” IP routers
(within the price range 50-70€) have already reached the
computational threshold required to run both widespread plat-
forms for IoT — OSGi framework and AllJoyn framework. As
sponsored member of AllSeen Alliance [8], we believe our
created extension of Gateway Agent within the AllJoyn frame-
work can be used (and modified) by community members.

ACKNOWLEDGMENT

The described research was supported by the National
Sustainability Program under grant LO1401. For the research,
infrastructure of the SIX Center was used.

REFERENCES

[11 A. Al-Fugaha, M. Guizani, M. Mohammadi, M. Aledhari and M.
Ayyash, “Internet of things: A survey on enabling technologies, pro-
tocols, and applications.” Communications Surveys & Tutorials, IEEE,
17(4), 2347-2376.

[2] Cisco, "Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update”, 2014-2019, February 2015.

[3] M. S. Whitcup and K. LaMattina, ”Juniper What is Inhibiting Growth
in the Medical Device Wearable Market?”, September 2014.

[4] P. Masek, J. Hosek, D. Kovac, F. Kropfl, "M2M Gateway: The
Centerpiece of Future Home.” In 2014 6th International Congress on
Ultra Modern Telecommunications and Control Systems and Workshops
(ICUMT). St. Petersburg, Russia (pp. 286-293).

[S] J. Hosek, P. Masek, D. Kovac, M. Ries, E. Kropfl, Universal Smart
Energy Communication Platform. In 2014 International Conference on
Intelligent Green Building and Smart Grid (IGBSG). 1. Taipei. Taiwan:
IEEE, 2014. pp. 1-4. ISBN: 9781467361217.

[6] OSGi Alliance [Online]. Available from: http://www.osgi.org.

[71 AllJoyn Framework [Online]. Available from: http://bit.ly/IOA9NNG.

8] AllSeen Alliance [Online]. Available from: https://allseenalliance.org/.

[9] I. Hosek, P. Masek, D. Kovac, M. Ries, F. Kropfl, ”IP Home Gateway
as Universal Multi- Purpose Enabler for Smart Home Services.” Elek-
trotechnik und Informationstechnik VE - Verbandszeitschrift, 2014, roc.
131, c. 5, pp. 1-6. ISSN: 0932-383X.

[10] M. Stusek, J. Hosek, D. Kovac, P. Masek, P. Cika, F. Kropfl, ""Per-
formance Analysis of the OSGi-based ToT Frameworks on Restricted
Devices as Enablers for Connected-Home.” In 2015 7th International
Congress on Ultra Modern Telecommunications and Control Systems
and Workshops (ICUMT). Brno, Czech Republic: 2015. pp. 211-216.
ISBN: 978-1-4673-9282-2.

[111 Apache Felix: OSGi Framework and Service Platform [Online]. Avail-
able from: http://felix.apache.org/

[12] Eclipse Equinox: OSGi core framework [Online]. Available from:
http://www.eclipse.org/equinox/

[13] Knopflerfish, Open Source OSGi SDK [Online]. Available from:
http://www.knopflerfish.org/

[14] ProSyst: Bosch Group
http://www.prosyst.com/startseite/

[15] AllSeen Alliance - Working Groups [Online]. Available from:
http://bit.ly/1SGYLSM

[16] GitHub: AllJoyn -
http://bit.ly/InbCHD4

[17] Twitter - REST APIs [Online]. Available from: http://bit.ly/11Gg3tP

|Online]. Available from:

Gateway-Agent-Connector. Available from:

