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Abstract—This article presents the new construction of
security-oriented codes that provides protection of device against
algebraic manipulations. New construction of algebraic manip-
ulation detection codes based on wavelet decomposition. The
proposed error-detecting schemes can significantly improves the
reliability of storage systems and channels of information trans-
mission. The presented code constructions provides a significant
gain in the systems that are already has wavelet transformation.
In these systems the coefficients of scaling functions are already
calculated and it can be used in the proposed constructions, it
gives the gain in rate of information processing and have lower
maximum of error masking probability.

I. INTRODUCTION

In case of nonuniform input codeword distribution, classi-
cal error detecting codes do not ensure protection against error
injection attacks, so in our case we try protect information
systems in case of nonuniform input codeword distribution.
The attacker can inject any configuration of errors and can
inject errors that can not be detected by classical linear and
nonlinear codes. For example, for linear codes such dangerous
errors are errors that equal to codeword of the linear code.
Injection of such error became possible with very high devel-
opment of side channel attacks, examples of such attacks can
be found in the articles [1, 2, 3]. In the [4], M.G. Karpovsky
proves that the linear codes are not suited for the protection of
information systems against this type of attacks, because they
have a high percentage of masking errors, so for protection
against of side channel attacks, it is used the codes detecting
algebraic manipulations or AMD codes.

Algebraic manipulation detection code is a new class
of security-oriented codes that detects any configuration of
errors in case of nonuniform input codeword distribution.
Codes detecting algebraic manipulations was developed by
both R. Cramer [5] and M.G. Karpovsky [6]. AMD codes
allow to detect any errors configuration with given probability,
moreover this type of code is capable to detect an error in case
of nonuniform input codewords distribution.

Mostly all encoding functions of existing security-oriented
codes have a high computational complexity. A large number
of multiplication operations and the use of random number
generators leads to a low rate of encoding that is critical at
present time. This article presents the two construction of weak
AMD codes that are based on wavelet decomposition. The
proposed constructions have a relatively higher rate of coding
in the systems with uses wavelet coefficients. At the same
time security parameters, such as the error masking probability
and the number of undetectable errors are not reduce. In this

article will be shown characteristic comparison of the proposed
construction and existing AMD codes.

II. WAVELET TRANSFORM

The wavelet transform is widely used for signal compress-
ing, processing and image analysis. This type of transformation
has all advantages of the Fourier transform, and moreover
wavelet basis are localized in time that allows to analysis a
signal in interested levels of decomposition. The idea of the
discrete wavelet transform is to divide the signal s(¢) into two
components: approximating A,, (¢) and detailing D, (t)

S(t) = Ap(t) + _Z D;(t), (1)

where m denotes a certain scale or decomposition (reconstruc-
tion) level of signal s(¢). This separation allows to delete the
noise from signal or to compress the information. Wavelet
transform has the relative complexity compared with the
Fourier transform, but the using of the so-called fast wavelet
transformation simplifies the process of decomposition. Proofs
for the above properties can be found in the manual of wavelet
transform, M.N. Yudin [7].

The idea of wavelet transform bases on the notion of
multiresolution analysis. The multiresolution analysis are de-
scription of L?(R) via hierarchically nested spaces:

"'CV2CV1CV0CV71CV72C"'7

Given spaces satisfy the following conditions:
]) ﬂmezvm == 07
2) UmezVin = LQ(R)7

3) the function and its compressed version must belong to
the space V,,,_1:

5(t) € Vi, & s(2t) € Vi1,

In this article, the first level of wavelet decomposition is
used. So the scale m in the formula (1) takes the value 1.
Hence, the formula (1) can be represent as

s(t) = A1(t) + D1(2).
It is possible to calculate the approximations of function

s(t) in spaces V; and Wj, where W7 is orthogonal comple-
ments of the subspace V) in V{). The presentation of wavelet
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transformation via the wavelet ¥ and scaling ¢ functions has
the form

s(t) = ardii(t) + > dir(t)i,
k k

where ay;, and dy, are approximating and detailing coeffi-
cients, k is a shift relative to original basis function.

Scaling functions ¢1y, is basis of corresponding space V.
So approximating and detailing coefficients can be represented
as scalar multiplication a1y, = (s(%), ¢1,%), dir, = (s(t), ¥1,1)-

As Vi C Vj are nested and ¢1;,(?) is orthonormal basis of

Vi, so
ai, = V2 E Ao n Pn+2k
n

dik = V2 dornGnro,
n

where n is a shift equals to the degree of using wavelet.
Sequences h,, and g, called the coefficients of scaling and
wavelet function correspondingly.

Denote discrete values of signal s(¢) as vector v' =
{w1,v9,v3,- -+ ,un}. This vector can be transform to vector
w1 that consist of coefficient a;; and di;. So, one step
of wavelet transform of the sequence v; can be presented as
follow:

a0 _ _
11 hi  ha hn T 1oy
’ hy—1 hy hy—a| | 4,
: .. o .. vs
A1,N/2—1| _ hs3 hg - ha .
digo 9N g2 ' gN I
d1,1 gN—-1 9N ° gN-—2 .
: L 93 gs go | LUN
_d1,N/271_

where {hi,ho, -+, hy} and {g1, 92, - ,gn} are coefficients

of scaling and wavelet functions.

The main application of codes based on wavelet transform
can be the storage, processing and transmission of images and
video. The relationship between wavelet transform and error-
correcting coding can be represent on the mathematical level.
As was described above, the wavelet transform is a partition
of signal into two components. Partition can be viewed as a
division of the original flow on approximating and detailing
components. Thus, the wavelet transform has two main maps
Vin—1 — Vi and V,,,_1 — W, that can be expressed in terms
of coefficients of scaling function ¢ and wavelet function .
Denote hy, ..., hy as the coefficients of scaling functions ¢
and g1, ..., gy as coefficients of wavelet function ¢, so wavelet
transform can be represented as a set of two cyclic matrices:

H = Cde(h17 h27 s 7hN);

G = cz'rd(gl7gz7 te 7gN)7

where d is a shift of matrix equals to the order of the used
wavelet. This division into two main components can be used
in the theory of error-correcting coding. A major class of
error-correcting codes are systematic codes in which each
codeword is divided into information and redundant parts. One
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of the basic approach to the construction of wavelet code is
using information part of the code as wavelet approximating
component A,,(¢) and accordingly the redundant parts as
detailing component D,,(¢). This approach is described in
detail in [8, 9].

The wavelet transform can be used for creation of new
error detecting codes, including security-oriented codes. In
particular, representation of information and random part of
AMD code as approximating and detailing components of
wavelet transformation allows to get new construction of
AMD codes. Detailed algorithms for wavelet AMD codes and
investigation of their characteristics will be discussed in the
next sections of this article.

III. MODEL OF ALGEBRAIC MANIPULATION AND THEIR
APPLICATION IN THE SECURITY-ORIENTED CODES

Let consider notion of algebraic manipulation and AMD
codes which are necessary for description of the wavelet AMD
code constructions. AMD (Algebraic Manipulation Detection)
codes are a generalization of robust codes for the case of alge-
braic manipulations. Consider the concept of abstract storage
device Y, G proposed in [5]. Let the device stores an element g
from a finite abelian group G. An attacker can not get the value
of an element g stored in the device > G, but he can change
the current value by introducing an additive error § € G. Such
mechanism of error injection is called algebraic manipulation.
After the algebraic manipulation, abstract storage device will
contain a value g + §. An attacker can choose the value of
delta using only a priori knowledge about the g. AMD code
encodes the input data s € S to the value of ¢ € G such
that the probability of algebraic manipulation was as high as
possible. Short description of algebraic manipulation model
are presented on Fig. 1.

Original information (input codewords). In vast
majority, in practice, s are nonuniform
distributed

se s

i geC
Injection of Z (@)
error >
5 Abstract storage
device

l g+0eG

ses

Fig. 1. Model of algebraic manipulation on the example of storage device

In the article [5], R. Cramer et al. allocate weak and strong
models of algebraic manipulation for the abstract storage
device Y G. In the case of weak model the attacker has no
way to choose the input values s. Thus, in this model input
values s are uniformly distributed, and the attacker can only
introduce some error ¢ in the device and can not change the
value of s on its own discretion.

In the case of strong model the attacker can select input
values s from the set S’ or change the occurrence probability of
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s. In this case, the attacker knows the current value of s € .S,
moreover he can select the following input value at its own
discretion. In both models, the introduction of the error value
g stored in Y G, should be known to the attacker.

Definition 1. Let G is a group of order n, and .S is a set of
the size m. Then (m, n,c) AMD code is a combination of the
probability encoding function F : S — G and deterministic
decoding function D : G — S U L, such that D(E(s)) = s
with probability 1 for each &.

1) AMD code is called strong if for any s € S and § € G
the probability that D(E(s) +90) € {s, L} is .

2) AMD code is called weak if for every § € G{0} and
s € S, the probability that D(FE(s) + ¢) #L less than €.

3) AMD code is called systematic if the set S is a group
and encoding function E has the following form

E:8S—G =8xG x Gy

S — (s,z, f(z, 8)),

where f : G1.5 X G — G5 is a certain function, z is randomly
selected from G;.

Reliability of AMD code is based on the fact that for any
z € S and € G the probability that the =z + § does not
belong to the allowed codeword combination less than a given
threshold ¢:

PriD(E(z)+s) ¢x]<e.

The strong AMD codes performs the probabilistic encryp-
tion. In probabilistic encoding process, some random sequence
are added for achieving a low probability of error masking.
Weak AMD codes do not use the probabilistic encryption. In
weak AMD codes, reduction of the error masking is achieved
by using of non-linear functions and additional transform of
input codewords, for example Gray transform. This article
presents the developed construction of weak AMD codes.

The two main parameters for AMD codes are

1) the robustness R and maximum number of undetected
errors R = mazx(z:z+ee ),

2) the maximum of error masking probability which is a
relationship

maz(z:z € C,a+eec () @)
M ?

maz Q(s) =

where M is the number of codewords in code C, z is
codeword, e is error vector. The smaller the value of the above
parameters, the more robustness of the AMD code.

Also it is worth mentioning about the importance of
systematic AMD codes. This type of codes is more flexible
in the choice of parameters than perfect codes for the same
code rate. Described in this article AMD code constructions
are systematic.
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IV.  ALGEBRAIC MANIPULATION DETECTION CODE
CONSTRUCTION BASED ON WAVELET TRANSFORM

In this section for building code construction will be used
approximating A; and detailing D; components of wavelet
transform. These components are obtained after the wavelet
transform of the first order of the original information sequence
s was made. It can be calculate with known coefficients
of scaling function using the cyclic matrix H and G as
described in the previous section. Discussed below designs are
considered for the wavelets order equals to 2, so the matrix
H,G have size N/2 x N, where N is the length of the
original sequence s. The calculation process for components
Ay and Dq is a matrix-vector multiplication s: Ay = H s s;
D1 = G % s. Information part of systematic AMD code
consist of approximating component 4y = y = {y1, ..., Yn/2}
in order, the redundancy part is the detailing component of
wavelet transform Dy = = = {z1, ..., Tn/a}.

The construction of the weak AMD code based on the
scalar multiplication.

Consider the following code structure. Code C' consist of
the following codewords

(y € GF(27 )|z € GF(27)|f(y, x) € GF(27)),

where y approximating component of wavelet transform, x
detailing component, s is the length of the vector in the AMD
code, f(z,y) = Zle x; $y; - scalar multiplication of vectors
x and ¥, | is concatenation symbol.

The approximating component y and the detailing compo-
nent x are considered as vectors of a finite field GF'(2"). The
scalar product of vector # and ¥ is redundant part of AMD
code.

Theorem 1. Described above code construction is AMD
code and has a maximum of error masking probability
maz Q(s) =27".

Proof. According to AMD code definition
PriD(E(z) +e) ¢ 2] < ¢, (3)

where x is a codeword, D and £ denote respectively the
decoding and encoding functions, e is injected error.

For AMD code, threshold ¢ is the robustness parameter
R, hence the solution of inequality (3) will coincide with the
solution of the next error masking equation

F(y7x)+3f:f(y+3y7x+ea:)§

S S
misyiter =3 (mites) s (yitey); (4)
=1 =1

Transfer all parameters that depend on the information part on
the left side of equation (4):
S
Ef = Z(x, * Sy, + Yi % g, + S, * Sy,) (5)
i=1
This code is AMD code if it can detect errors with e, #
0. Indeed, according to the definition of AMD code given in

Section 2, it can be argued that described construction is AMD
code with threshold & = 1/25.
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It can be seen that there is no combination of ¥ and e
(e, # 0), such that inequality (5) holds for Vz, therefore, for
fixed values of y and an e (e, # 0), the right side of the
expression (5) is constant. Moreover left side of equation (5)
will not be equal to this constant, if at least one e, # O,
hence the error e, # 0 will be detected, and the considered
construction is AMD code.

Let’s find the maximum of error masking probability for
the proposed construction. Let k& be the number of variables in
the equation (5). Thus, the error masking equation (5) is the
equation of the first degree of the k variables z; € GF(2").
Therefore, this equation has a or(k=1) roots, hence the robust-
ness for this code is R = 2"(*~1), By definition, the maximum
of error masking probability equals maz Q(e) =27".1

The construction of the weak AMD code based on
Maiorana-McFarland function

In this construction approximating component y and de-
tailing component x are divided into equal parts, which are
represented as vectors in a Galois field. In order, the multipli-
cation of derived vectors are the encoding function for given
construction.

Consider the following encoding function
F(%@ =Ty Y1+ T2 Y2+ ... +Zp Y,

where z, -y, multiplication in Galois field GF(2"), r is the
length of each part. The encoding function is perfect nonlinear
function. This function also is called as Majorana-McFarland
Sfunction.

Theorem 2. The construction of the wavelet AMD code
based on Maiorana-McFarland function is a weak AMD code

and has a maximum of error masking probability maz Q(e) =
27",

Proof. For proof, it is necessary to consider the relation-
ship between the nonlinearity of encoding functions P and
robustness parameter R of AMD code. In articles [10, 11],
it is proved that between the above parameters there is a
clear dependence R = Py2 where R is a robustness, Py
is nonlinearity parameter of encoding function, the k is the
number of information symbols in the codewords of code
construction. As shown in [12], the nonlinearity of function
can be find by using the derivative

Py = Pr(D., Flz,y) = e,) = 1/2",

max max

ey, €GF(27) e, eGF(27)
where 7 is a length of redundancy part of the codeword.
F(z,y) is some function depending from two parameters x
and y, e, and e, are error corresponding to parts x and .
Thus, according to definition of AMD code, proposed above
AMD code is a code with a threshold € = R = 2°~", where k
is the sum of the lengths of the main stream of x and wavelet
flow .

For finding of the maximum of error masking probability,
it is necessary to analyze the number of solutions for the error
masking equation

F(k)y4+ef—flk+ep) =0=
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where & is the sum of the lengths for main stream z and
wavelet flow y, e, and ey are errors for information and
redundant parts correspondingly. The last equation have no
more than 2%~ solutions. That is for every e = (e, ey), there
are no more than R values of %k for which the error masking
equation are correctly. Since the &k denotes the length of the
concatenation vector of x and %, hence, there is no more R
solutions respect to the variable = for which the error will be
masked. Thus, by definition of the error masking probability,
we get mazr Q(e) = R/2F =2k /2F = 27" M

V. ALGEBRAIC MANIPULATION DETECTION CODES
UNDER NONUNIFORM INPUT CODEWORD DISTRIBUTION

Nonuniform distribution of the input codewords has a huge
impact on the parameters of the security-oriented code. By
controlling the input codewords, attacker has the possibility to
reduce the maximum of error masking probability. Thus, the
attacker increases the chances of successful error implementa-
tion in the device even if it uses AMD codes for protection.

Let’s consider a simple example of how the changing of
the input codeword distribution effects on the error masking
probability Q(e). May the code C receives the information
sequence s on the input. Let’s the encoding function of code
C' have the form F(z,y) = zy, where = and y are two equal
part of input information, so s = (z|y). Redundancy part of
code are multiplication of vector = and ¥ in field GF(2"),
where 7 is length of these parts. Codewords of given code C
have the form (x|y|zy), where zy are field multiplication. The
length of codewords equal to 3r and a number of codewords
equal to 23", We will consider behaviour of these constructions
under uniform and nonuniform distributions.

For a uniform distribution of the codewords, the probability
of each input codeword is p(s) = %, where M is the number
of codeword of code C. Let’s calculate the error masking
probability Q(e) for each error e using the formula (2). The

obtained distribution of ¢)(e) presented in Fig. 2.

0,25

Error masking probability Q(e)

1357 9111315171921232527293133353739414345474951535557596163
Decimal representation of vector errore

Fig. 2. Distribution of error masking probability for code C' under uniform
input codeword distribution

As can be seen from Fig. 2, the resulting distribution of
error masking Q(e) is almost uniform, except for a few errors,
for which the probability ¢(e) is equal to zero. However, the
zero probability of error masking is not dangerous from the
security point, since their implementation will be detected by
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any input codeword s. In turn, errors with a high probability of
error masking are the most dangerous. Note that for considered
function the maximum value is equal to 0.25. Usually, the
errors are suitable for implementation, if the probability of
error masking exceeds 0.5.

But mostly, the distribution of probability of input code-
word are nonuniform. Moreover, this distribution can be de-
fined by an attacker. For example, the probability of input value
s will be taken according to the following piecewise function

0.25, for s € [8;9]
0.15, for s € [7;10]
0.05, for s € [6;11]
0.01, otherwise

p(s) =

where integers in square brackets are decimal representation of
binary input s. Fig. 3 shows the distribution of error masking
Q(e) calculated according to the formula (2).

<R
—

e

=]
w
—
——

=} =]
- o
I

Errormasking probability Q(e)

1 3 5 7 911131517192123252729313335373941434547 495153 5557596163
Decimal representation of error vectore

Fig. 3. Distribution of error masking probability for code C' in case of
nonuniform distribution of input codeword

It is clear from Fig. 3 that distribution of ((e) far from a
uniform distribution. The figure shows that there are at least
3 errors with the error masking probability greater than 0.5.
In case of the injection of these errors, more than half of the
codewords of C' will lead to algebraic manipulation. Thus, the
opportunity to influence on the input values s is a powerful
tool for the attacker. Therefore, all the security-oriented codes
must be checked for cases of nonuniform distribution of the
input codewords.

For further measurements of error masking probability, the
following distribution functions of input codewords were used:

1) uniform distribution p(s) = 1/16 for all s
2) distribution 1

0.25, for s € [8;9]
0.15, for s € [7;10]
0.05, for s € [6;11]
0.01, otherwise

p(s) =

3) distribution 2

] 0.1, for s € [4;9]
pls) = { 0.04, otherwise

4) distribution 3

0.5, for s € [6]
0.1, for s € [7;8;9;10; 11]
0, otherwise

p(s) =

5) distribution 4

0.2, for s € [4;6;8]
0.1, for s € [2;3;5]
0.01, otherwise

p(s) =

From Tables I, II and III it can be seen that the proposed
AMD wavelet codes provides gain in encoding rate in systems
that uses wavelet transform. Moreover, proposed wavelet AMD
codes have higher error masking probability under nonuniform
distribution of input codewords. Thus proposed construction
can be successfully used for protection of storage devices if
there is a possibility of algebraic manipulation.

TABLE I. COMPARING OF MAXIMUM OF ERROR MASKING
PROBABILITY FOR CASE OF NONUNIFORM DISTRIBUTION OF INPUT
CODEWORDS FOR R=2

max Q(e) max Q(e),
Compared construction uniform nonuniform
distribution distribution 1
Wavelet AMD code based on
Maorana-McFarland function 0.0625 00742
Wavelet AMD code 'based 0.0625 0.0793
on scalar production
AMD code based on
Reed Solomon codes 0,1250 0,1334
AMD code based on
multiplication in field 0,0078 00119

TABLE II. COMPARING OF MAXIMUM OF ERROR MASKING
PROBABILITY FOR CASE OF NONUNIFORM DISTRIBUTION OF INPUT
CODEWORDS FOR R=2

max Q(e),
nonuniform
distribution 2

max Q(e),
nonuniform
distribution 3

Compared construction

Wavelet AMD code based on

Maorana-McFarland function 0.0838 00835
Wavelet AMD code 'based 00723 00722
on scalar production
AMD code based on
Reed Solomon codes 0,1586 0,1270
AMD code based on 0.0093 0.0099

multiplication in field

TABLE III. COMPARING OF RATE ENCODING FOR INFORMATION
PROCESS OF 1MB AND LENGTH OF CODE CONSTRUCTION N=12 AND
INFORMATION PART EQUAL 4

Rate of encoding Rate of encoding
Compared construction in system in system
with wavelet without wavelet
Wavelet AMD code based on
Maorana-McFarland function 0,545 0,42
Wavelet AMD code 'based 0.56s 0.51s
on scalar production
AMD code based on
Reed Solomon codes 0,43 s 0,43
AMD code based on
multiplication in field 0,685 0.68s
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In this article was presented comparison of developed
AMD code constructions and nonlinear security-oriented
codes. For comparison, software models of encoding process
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was designed for all considered constructions. For system
with wavelet transform, a comparison of encoding rate was
performed for ADV621 system that makes video compression
by using Daubechies wavelets. Also a comparison for nonuni-
form codeword distribution of input codeword was made.
The measurement results are shown in Tables I, II and III.
Detailed description of AMD code construction based on
Reed-Solomon codes and based on the multiplication in the
field are presented in [13, 14].

VI. CONCLUSION

The article presents the new construction of weak AMD
codes based on wavelet transform. Using of the developed code
in systems with wavelet transform reduces the computational
complexity of encoding and decoding process. The proposed
coding methods are more resistant to algebraic manipulation
than existing AMD codes, in particular developed codes are
more stable to algebraic manipulation than AMD codes based
on Reed-Solomon codes.
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