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Abstract—Meost modern devices and cryptoalgorithms are
vulnerable to a new class of attack called side-channel attack.
It analyses physical parameters of the system in order to get
secret key. Most spread techniques are simple and differential
power attacks with combination of statistical tools. Few studies
cover using machine learning methods for pre-processing and
key classification tasks. In this paper, we investigate applicability
of machine learning methods and their characteristic. Following
theoretical results, we examine power traces of AES encryption
with Support Vector Machines algorithm and decision trees and
provide roadmap for further research.

I. INTRODUCTION

Cryptanalysis is a study that investigates ciphers and
cryptosystems in order to find vulnerabilities and exploits
them to get secret information used in such systems and
ciphers or in some other way retrieve the plaintext from the
ciphertext. Commonly cryptographic algorithms are studied
from the viewpoint of the mathematics, because cryptography
in digital application is a mathematical study. However a
new direction developed since 1996, that considers algorithm
altogether with its physical implementation[1]. Side-channel
attacks is a field in cryptanalysis that exploits information
gained from the physical implementation of a cryptosystem,
rather than theoretical weaknesses in the algorithms. Real-
world cryptoalgorithms are certainly implemented on some
device, like PC or a dedicated hardware module, so the
device’s properties can be used to break the algorithm. Side
channels include, but not bounded to, power consumption,
electromagnetic emanations and acoustic emissions. Another
side-channel that stands apart is fault analysis. Fault analysis
is always an active attack, which means direct intervention
to the operation of a device, and it is performed by inducing
faults in the device (e.g. using power glitches) and basing on
the output recovers the plaintext. [2]

The majority of works in this field has power analysis is
under examination as the most fundamental and efficient side-
channel. Timing analysis is less of concern nowadays, electro-
magnetic emanations are commonly a derivative from power
fluctuations and acoustic emission covers narrow range of
device, being on the border with electromagnetic emanations.
Moreover, several steps were made towards standardization of
power leakage measurement including creation of a hardware
platform [3], and several contest aimed on evaluation of
leakage of AES and DES [4]. Power traces used in this paper
include those provided for DPA contest v2 [4] and Tescase
AES traces [5]. In our work we analyse power consumption

traces of AES algorithm, performed on the SASEBO-GII board
with application of machine learning to key recovery and traces
pre-processing as well as work out background for the attack
and characteristics effect on the performance.

Our paper is organized as follows: second section presents
an introduction to side-channel attacks with a stress on phases,
where machine learning can be applied. In section III current
state of art is presented with practical examples of attacks.
Sections IV and V disclose in details two selected for research
algorithms. In section VI practical results are presented. Con-
clusions and further work can be found in the last section.

II. SIDE-CHANNEL ATTACK

There are two main types of side-channel attacks. Non-
profiled attack makes use of a leakage model, which consist
of the output value of encrypting function for each target
value, and then compares real leakage to predicted model.
More stronger assumption is that an adversary can perform
a profiling phase, which measures probability of the subkey
hypotheses, and is called profiled attack.
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Fig. 1. Typical scenario for a side-channel attack
On the Fig. 1 the typical attack scenario is shown. An
attack can be divided into two phases:

1)  Training phase (left side of the Fig. 1). In this phase
an attacker builds a model based on some hypothesis,
for example, Hamming weight or Hamming distance
between two processed values as in differential attack.
He or she can also perform more stronger technique
called profiling.
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At profiling an attacker controls a copy of the device
identical to the target and can perform any opera-
tion he/she wants. Cryptographic key at the profiling
phase is at attacker’s disposal as well, following the
Kerkchoff’s principle, so the attacker can change
key, choose any plaintext as the input to the device.
The device can execute sufficient times of encryption
operations for power trace acquisitions.

Output of this phase is key hypotheses modeled with
selected metric and selection function.

2)  Attack phase (right side of the Fig. 1). In this leakage
on the attacked device is measured, power traces
are pre-processed to diminish dimensionality. Ready
traces are compared with predicted leakage using
distinguisher algorithm. The most common technique
in this case is correlation computation. Pearson cor-
relation coefficient p for information component ¢ of
all measured traces between predicted leakage L, and
measured leakage L, (¢) is defined as follows:

Cov(Lyp, Lin(t))
\/Var(Lp) -Var(Ln(t))

where Cov is covariance and Var defines variance.

(1)

p(t) =

Two main objectives for researchers are pre-processing or
feature selection, that filters out traces with low informational
component and extracts most useful points for the following
steps, and classification, that allows to distinguish secret key
basing on the device model and real acquired traces.

Pre-processing is as well needed in order to diminish the
set of points in trace, as high-order signal takes more time
to process in the attack. Common side-channel metrics on the
preprocessing step are Pearson correlation coefficient (aligns
traces) and signal-to-noise ratio, which is the ratio between
the power consumption and the standard deviation of power
leakage. Another improvement of an attack and reduction of
the traces step can be made using sum of squared pairwise
differences (SOSD) and SOST, that utilises a Student T-test
instead of a difference as in SOSD. The latter was proved
to be more optimal [6]. In [7] new statistical pre-processing
technique is proposed. Normalized Inter-Class Variance does
not require neither a clone device nor the knowledge of secret
parameters and can also be used for testing leakage models
and countermeasure implementation.

A. Template attack

Template attacks are the strongest kind of side-channel
attack. It has similar premises to profiling phase, but more
precisely refers to modeling the target device’s algorithm using
all possible keys. Captured and processed data for each key is
called template. It might include noise characteristic as well,
along with information component (points of interest, leaking
knowledge about secret data). As in profiling phase big amount
of data is collected, pre-processing techniques to overcome
computational complexity are also applied. The basic idea of
the template attack is to model the power consumption as a
high dimensional Gaussian distribution dependent on few key
bits.

On the attack phase power trace for some secret key is
captured. Using existing templates for each key, the task is
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to classify the trace to one or more templates. Examples of
successful attack can be found in [8] and with combination of
machine learning in [9].

III. MACHINE LEARNING IN SIDE-CHANNEL ATTACKS

First ever mention of using machine learning in cryptog-
raphy belongs to Ronald L. Rivest in his work “Cryptography
and Machine Learning” [2]. Noticing the similarity between
the said fields, between notions, e.g. cryptographic “secret key”’
and “target function” in machine learning, he poses the ques-
tion of applicability and provides some initial examples. As
cryptanalysis develops, arises new field — side-channel attacks,
that yields even more objectives than classical cryptography.
A lot of them, e.g. preprocessing, adapt machine learning for
problem solving.

Application of machine learning particularly in side-
channel attack was in the work concerning printer acoustic
emanation [10]. Combination of different techniques including
neural networks allowed authors to recover up to 95% text by
listening the sound of a printer in work.

However, generally, side-channel attacks aim on cryptog-
raphy and try to recover secret data, such as keys, from side
signal. AES is studied in [11] with the focus on Least Squares
Support Vector Machines. No key recovery was made in said
research, as emphasis was rather made on binary classification
application in side-channel. Similar approach is used in [12],
where Least Square Support Vector Machines were studied to
perform an unsupervised attack on AES.

Successful attack on AES using SVM is presented in [13].
It should especially be noted that attacked version of AES is
masked, so this side-channel countermeasure was completely
overturned by well-trained SVM classifiers.

Another attack that made use of SVM is [14] with target
smartcard running DES. Authors proved that SVM outper-
forms traditional DPA, because of impossibility of varying
keys, and SPA, because of signal complexity, as well as
template attacks, which are efficient, but more complicated

to apply.

Random Forests and Self Organizing Maps have also
proved to be useful in key distinguishing tasks. AES was
attacked using Random Forest in [15]. In [16] 3DES was
attacked using Random Forest and Self Organizing Map and
their combination as a pre-processing and classification meth-
ods. Same authors further study Random Forest in the attack
on AES along with SVM, template attacks and multivariate
regression analysis in [17].

Overall, it was shown, that if traces follow a parametric
Gaussian distribution, machine learning methods perform
worse than template attacks as template attacks are based on
Gaussian model [18].

Pre-processing step has widely adopted a method called
principal component analysis (PCA). It is a orthogonal, non-
parametric transformation, which is aimed on computing a new
basis for the traces, so that it discloses its principal structure.
Shown on the Fig. 2 Principal Components Analysis chooses
the first PCA axis as that line that goes through the centroid,
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Fig. 2. Principal Component Analysis method

but also minimizes the square of the distance of each point
to that line. Thus, in some sense, the line is as close to all
of the data as possible. Equivalently, the line goes through
the maximum variation in the data. Addresing the question of
components quantity there are two main approaches: threshold
can be defined as a percentage of total variation or by a scree
test. The latter means that desired number of components is
derived empirically from the plot of eigenvalues(intermediate
values used in PCA).

However, PCA can be used as a distinguisher as well, as in
work [19] attacking masked DES. Reference [20] covers PCA
applicability to side-channel attacks in more details.

Summing up, principal component analysis in side-channel
analysis is:

e  Useful for template attacks i.e. interesting points se-
lection

e  Used for new distinguishers (variance dependency)
e Reducing the dimensionality of data

e Learning about leakage model

IV. SUPPORT VECTOR MACHINES

Support vector machines (SVM) are a group of supervised
learning methods, a kernel-based technique that can be applied
to classification or regression. The aim is to perform binary
classification with high generalization ability and it does it by
separating space with a hyperplane. If such hyperplane doesn’t
exist it maps data to higher dimension, where constructs
another hyperplane.
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A. Binary classification

There are two ways of hyperplane separation. First of all,
it can be based on maximum margin. Margin is a distance
in-between two investigated groups of two different classes.
Classes are separated using support vectors(Fig. 3) and the
goal is to find such vectors that separate these classes in a
way that will maximize the margin.

Maximum.
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u

Fig. 3. Support Vector Machine concept [21]

Namely, support vector machines are trying to solve
quadratic optimization problem. The reason of such maximiza-
tion is that if there exists infinite number of hyperplanes that
allow separation, then the one that maximizes the margin, will
minimize generalization error.

In case of linearly separable data the previous way works
fine, but when it comes to non-linear data another technique is
needed. Non-linearity is overcome by mapping data to higher
dimensions, where data is linearly separable and hyperplane
can be built.

Further, it should be noted that using PCA as a prepro-
cessing step must be performed cautiously as it can imperil
the performance of SVM. Another serious problem of SVM
is overfitting. It can be identified by comparing results of
classification of training mode and the classification itself,
which should not differ greatly. Several tricks are used to
reduce overfitting, such as margin maximizing and careful
choice of kernel function.

B. Multi-class classification

Essentially Support Vector Machine is a binary classifi-
cation method and research on how to effectively extend it
to multi-class is still going on. Nevertheless, it can be used
for multi-class classification via combination of several binary
SVMs. Despite the fact there are other original approaches
created, e.g. [9], two general solutions to this problem can be
highlighted:
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o In one-versus-all approach k-class classifiers are used
and set of binary classifiers f1, f2, ..., f* is con-
structed, where each trained to separate one class from
rest. This is the earliest used implementation SVM
multi-class classification, but according to [22] is less
competitive than the following.

k(k—1) .
e  One-versus-one approach needs only E—1) in case of

k-class classification. Used binary SVMs are trained
to distinguish between each pair of classes, so each
SVM votes for one class. Result is based on the sum
of the votes, so the class with maximum number of
votes wins.

1) Kernels: SVMs, described in previous section, are use-
ful to classify linearly separable data. However, in some
scenarios the data might not be linearly separable. In order
to defeat this problem SVM are combined with kernel func-
tions. As it was said, non-linear data can be mapped into
a higher dimension, where feature vectors will be linearly
separated. Thus, the computation of the inner product can
be extended by a non-linear mapping function ¢(-) through
(i, z5) — (Pp(;),d(x;)). The exact mapping ¢(-) does not
need to be known, which is denoted as the kernel trick, since
it is implicitly defined by the kernel function.

Example of such kernel can be Radial Basis Function,
which computes dot-product between points of feature vectors.
If a Radial Basis Function (RBF) kernel is used, for example,
and the scale factor (kernel parameter) is set to a very small
value, the SVM will tend towards a linear classifier. In case of
a high value, the output of the classifier will be very sensitive
to small changes in the input, which means that even with
margin maximisation, over-fitting is likely to be present.

Fig. 4. Binary decision tree

V. RANDOM FOREST
A. Decision tree

For illustration of a decision tree, also called classification
tree, lets introduce an example. The task is to perform classifi-
cation of a group of balls. Two sets of features are colour and
ball size, and it’s defined that this features are interdependent.
Let suppose we know this dependency: black balls are 1 cm
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in diameter, white are 5 cm in diameter and white ones are
10 cm. Then, a system with 3 holes is made. It represents
selection function. In the first hole can fall all the balls, whose
size is is exactly 1. Size of the second is enough to let balls
less then 5 cm pass. The last hole suits for all sizes. By putting
a ball in a hole, we can deduce its color. For that we are going
to construct a decision tree.

We have rules of a type “’If an object this feature, then we
categorize it as this group”. So if a ball doesn’t fit in the first
hole, we categorize it as “colour not black”, then doesn’t fit
in the second hole and colour is not white an we get to the
leaf with the answer the ball colour is red” Arrangement of
a group of such rules we get an hierarchy Fig. 4

This hierarchy forms a decision tree, where each leaf
determines one category. Construction is iterative, starts with
the set of observation on the target device and number of
classes every leaf should have. First of all, at the root we divide
all the data in homogeneous sets (homogeneity is assumed for
simplicity). At each node the set is divided again on the basis
of some feature. For more details on the best splitting and
splitting principles please refer to [23].

On classification input starts from the top and proceed
down the tree until a leaf is reached. Leafs represent answers
to classification, for example, a class label corresponding to
the target.

B. Random forest

Decision tree is a "weak learner”, similar to SVM it is
prone to overfitting, but it can be improved using ensembles.
It is a divide-and-conquer approach to combine a group of
“weak learners” to form together a “strong learner”.

Algorithm works as follows. At first step, set is randomly
divided at N cases, which are going to be separate decision
tree. At each node m features are selected at random and the
one that provides the best split (according to some objective
function) is chosen. And the process continues iteratively for
each node. It worth mentioning basis principle of a random
forest that makes them resistant to overfitting:

e  hagging improves unstable procedures by combining
classifications of randomly generated training sets, can
be paraphrased as averaging. On the Fig. 5 dark line
represents “’strong learner”, whereas pale lines are
separated “weak learners”

The main parameter of Random Forest is number of trees,
other important parameter is number of features. While tree
depth is dependent on the selected features, number of trees
is more interesting object of study and needs more research
as after certain point of forest growth results stop getting sig-
nificantly better. For example, in case of side-channel attacks
existing works used size of 500 on the basis of sufficiency
for experiment’s goals [25]. Empirically, optimal size of forest
equals to sqrt(features) for classification tasks [26].

VI. PRACTICAL RESULTS

In this section intermediary results of machine learning
methods applicability are shown. As it was stated, power traces
were obtained from DPA contest website [4] and TeSCASE
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Fig. 6. Power trace of DPA contest v2

website [5]. The power traces were acquired using SASEBO
GII board at a sample rate pf fs =5 GHz and about one round
of AES is shown on the Fig. 6. One trace contains 3252 points.

The main emphasis of our work is made on classification
task rather then on pre-processing. At first, no pre-processing
was used, but problems connected with dimensionality and
the need of selecting specific points of interest lead us to
use Principal Component Analysis to filter 50 points out of
traces. Another improvement used on the power traces was
normalization. It was done by reducing each point to normal
distribution with mean value of zero and variance equal to 1.
On the Fig. 7 results are presented, for better visibility they’re
scaled to 500 points. It can be seen that difference between
traces on the range (300-400) became more visible even with
the naked eye.

In order to minimize data set and by that reduce dimen-
sionality and computational complexity Principal Component
Analysis was used and results are presented on the Fig. 8. It
was as well implemented using scikit decomposition.PCA
in Python with n_components set to 50. Selected
value is based on a scree test.
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Fig. 7. Normalization of the power traces of DPA Contest v2
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Fig. 8. Traces after applying Principal Component Analysis

Classification program was written in Python with the
usage of scikit-learn library. More precisely, scikit classi-
fiers DecisionTreeClassifier and SVR were used.
General approach included bitwise and bytewise key clas-
sification. Parameter of the Decision Tree Classifier called
min_samples_split determines the depth of a tree. For Support
Vector Machines tuned parameter was kernel of two types:
linear and based on Radial Basis Function.

TABLE 1. CURRENT RESULTS
Algorithm Key analysis [ Recover results Par ters
Decision Tree Classifier bytewise 0.01 min_samples_split=30
Decision Tree Classifier bylewise 0.005 min_samples_split=20
Decision Tree Classifier bytewise 0.025 min_samples_split=60
SVM bytewise 0.0025 kernel=rbf
SVM bytewise 0.0025 kernel=linear
Decision Tree Classifier bitwise 0.0042 min_samples_split=30
Decision Tree Classifier bitwise 0.0048 min_samples_split=70
SVM bitwise 0.0052 kernel=rbf
SVM bitwise 0.0042 kernel=linear
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Bytewise classification is regarded as first byte classifica-
tion. Algorithm that were under investigation include Decision
Tree Classifier and Support Vector Machine with different start
characteristics. Influence of the algorithm parameters is to be
investigated, as well, as impact of pre-processing, while current
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results are presented in the Table I.

VII. CONCLUSION

Side-channels attacks are one of the most powerful kind
of attack on cryptographic systems. The implementations
can subject to side-channel attacks no matter how secure
the algorithms are in theory. A lot of standards, created by
governments and private companies, such as FIPS (Federal
Information Processing Standard), CC (Common Criteria), and
EMV (Europay, MasterCard, and VISA) include requirements
for security compliance of products to various levels of coun-
termeasure against side-channel attacks.

Our research concerned structure of any side-channel anal-
ysis and identified most interesting points for machine learning
application and limitations and weaknesses of statistical tools.
Then our focus moved on the application of machine learning
in side channel data analysis and we proposed our approach
based on SVM classifier and Decision Tree Classifier which is
to be moreover extended to Random Forest method. For SVM
classifier two most popular kernel function are investigated and
compared.

For further research extension of the machine learning
algorithm for classification as well as precise tuning of the
parameters is left. Accurately constructed machine learning
approaches can surpass existing statistical methods and provide
more efficient apparatus for side-channel attacks.
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