PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Performance Analysis of Thread Synchronization
Strategies 1n Concurrent Data Structures Based on
Flat-Combining

Marsel Galimullin, Eugeny Kalishenko

St.Petersburg Electrotechnical University “LETI”
St.Petersburg, Russian Federation
mfgalimullin@yandex.ru, ydginster@gmail.com

Abstract—The article deals with the development of threads
synchronizing strategies based on the creation of concurrent
"flat-combining' data structures as well as research of their
performance. The paper considers '"flat-combining" approach
and its implementation in the library libeds, the development of
thread synchronization strategy and its possible implementations.
The efficiency of synchronization strategies usage is researched
on the example of the open source library libeds. The research
revealed the strategy with the lowest operation execution time on
a container and the lowest amount of CPU resources, and
identifies use cases of the developed strategies. A mechanism with
the developed synchronization strategy to build concurrent data
structures was implemented. The implemented strategies were
integrated in the cross-platform open source library libeds.

1. INTRODUCTION

The development of high-performance systems caused the
uprise of competitive data structures encapsulating the logic of
threads' synchronization and targeting different usage
scenarios of containers. Some of the scenarios represent the
rise of performance in case of increase of one thread's operate
time while other threads delegate their tasks to that one thread.
This approach was called flat-combining (FC) [1].

FC is the most general approach for creation concurrent
high performance data structures ased on sequential access
data structures as deque, list, tree etc. High performance
ensured by the fact that operating system scheduler allocates
time quanta to threads proportional to their load.

Common FC which described in [1] implemented in the
cross-platform open source library libeds [9]. It is C++ library
wich contains wide set of ¢ high performance oncurrent data
structures based on lock-fiee and wait-free
algorithms.

The main idea of flat-combining in case of stack is as
follows: for the stack we use mutex and a publication list of
size that is proportional to the number of threads working with
the stack. Every thread first time accessing to the stack adds its
record to the publication list. If a thread needs to execute an
operation on the container, it publishes a request in its record
and tries to acquire mutex. The request consists of an
operation (in case of a stack, push or pop) and its arguments. If
mutex is acquired, the thread becomes a combiner. So, it looks
through the list, executes all requests from it, puts the result in

Nikolay Rapotkin
PJSC Information Telecommunication Technologies
St.Petersburg, Russian Federation
rapotkinnik@gmail.com

the corresponding list item and, finally, releases mutex.
Otherwise, if the attempt to acquire mutex failed, the thread is
spinning on its record until a combiner executes its request and
puts the result in its record in the publication list.

A publication list is built in a special way to reduce
overhead costs on its control. The clue moment is rare
changing of a publication list. Otherwise, apart from
controlling access to a sequential structure it is needed to
control access and the consistency of a lock-free publication
list. A request for operation is placed in already existing record
which is placed in TLS. To simplify lock-free list control the
list head is never changed and used as a fake element, which
doesn't belong to any thread of FC core. New records are
placed strictly in the list's end.

Some records of the list can have «empty» status. That
means the corresponding thread is not performing any actions
through the sequential structure at the moment. From time to
time a combiner excludes inactive records from the Ilist
choosing records that were inactive for a number of combiner's
iterations. That reduces time needed to process «empty»
annotations (long time inactive threads). Instead of physical
removal a logical list record removal is used. So such a record
is marked as «inactive» and that excludes it from the
combiner-thread's processing. As physical removal is a rare
occasion that reduces overhead costs on lock-free list control.
Still, that helps to control list's size.

@ infrequently, new records are CASed

@ thread acquires lock,
by threads to head of list, and old ones are I

becomes combiner,

removed by combiner head updates count
t
@ thread writes request and ae?
spins on localrecord ="
m
request request [[request | [Crequest | [[request ] = i
< Jagelact agelac] Tageract|~<—f=age/act|€—Tageract| --l—“ T3 t
e EEE
Thread B Thread G Thread A Thread F Thread C mafan o o e Mg

publication list sequential data structure

@ combiner traverses list,
performs scanCombineApply()

Fig. 1. The principal components of the data structure constructed within the
framework of flat-combining: consecutive data structure protected by
synchronization primitive and the publication list

II. SYNCHRONIZATION STRATEGIES

However, threads' busy waiting disturbs combiner-thread's
work, aside from wusing processor resources. Different

ISSN 2305-7254



PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

synchronization strategies can be used to decrease the
influence of waiting threads on the work of combiner-thread.
Strategies had been selected for development and investigation
are based on wait/notify technique and feature the
configuration of mutex usage and a condition variable. The
standard wait/notify algorithm is frequently used for
Publish/Subscribe pattern realization and consists of the next
steps:

e A consumer-thread is waiting some condition to be-
come true, in this case such thread is the thread that an-
nounces its operation and waits the operation to com-
plete. The waiting thread should acquire the
synchronization primitive. This blocking is passed to
the wait() method that releases mutex and suspends
thread until the signal from the conditional variable is
got. Then the thread awakes and the synchronization
primitive is acquired again;

A producer-thread indicates the condition has become
true, in this case such thread is the combiner-thread
which executes the announced operation and sets op-
eration-completed flag.

Let’s consider implemented strategies in details and com-
pare them.

A. Back-off strategy

This strategy is used in the original realization of flat-
combining in libeds library. When N threads compete for the
critical resource that can be accessed with the help of CAS-
operations, only one of them gets an access. Other N—1 threads
interrupt each other and consume process time in vain. In case
of such a situation detection in order to offload a processor
threads can back off, stop execution of the main task and do
something useful or simply wait. To do it the back-off
strategies are used.

According to the report [3], using back-off strategy
implemented as a 2 milliseconds delay in every iteration of
cycle, increased FC productivity significantly and showed
good results in high load condition.

B. Wait/notify strategy based on the global mutex and the
condition variable

The strategy is based on the usage of synchronization
primitives of the FC core which are shared by all threads.

FC Kernel

become a combiner, it waits for notification of the operation
completion by a combiner-thread on a condition variable
shared by all threads.

3: If a thread successes to acquire the FC core mutex this
thread becomes a combiner. The combiner processes all the
records one by one. Having processed an announced record,
the combiner-thread notifiers all awaiting threads.

4: The thread that have got a notification of an operation
completion then transits into «Ready» state and starts being
processed by a task scheduler. When it transits into
«Execution» state and the work actually restarts, it examines
its operation completion flag. If the operation is still not
executed, the thread starts spinning again awaiting of the
next notification.

Parallel operation

FC core mutex
execution

acqulre:

Combiner-thread

Operation announcement
Try to acquire mutex
of the FC core

Arnotations list
is not empty End of

annectations list not reached
Announced | operation.. [(NGEfication of
operation  —operator all walting
execution pleted threads

FC core mutex
acquiring failure

FC core mutex
acquired

Reached end of
annotations list

Waiting fer an announeed operation

Transition to the
waiting state

Try to acquire mutex
*

of the FC core

FC core mutex
acquiring failure

Operation

Repeated operation
Completed

Check operation
completion flag

Operation
d

announcement

Fig. 3. The strategy algorithm based on one mutex and one condition variable

C. Wait/notify strategy based on the global mutex and the
thread-local condition variable

This is a modification of the former strategy. It uses one
extra mutex aggregated in the FC core and a condition variable
for every thread aggregated in thread's publication record in
the publication list (Fig. 4). This modification is dedicated to
minimize needless iterations in the cycle of waiting for an
announced operation execution in the worst case scenario. It
excludes needless iterations at all.

global_mutex: Mutex

yaitstrategyMutex: boost:mutex
W‘w : L —

Fig. 2. The strategy based on one mutex and one condition variable

Algorithm 1 The threads interaction algorithm (Fig.3)

1: If a thread wants to execute an operation on the container,
it announces a record and tries to acquire mutex of the FC
core.

2: If a thread fails to acquire mutex of the FC core and

55

FC Kernel
global _mutex: Mutex

aitStraregyMutex: boost:mutex

i

ExtendedPublicationRecord
ocalCondvar: boost:cond var

Fig. 4. The strategy based on the global mutex and thread-local cond. variables




PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Algorithm 2 The threads interaction algorithm (Fig.5)

1: If a thread wants to execute an operation on the container,
it announces a record and tries to acquire mutex of the FC
core.

2: If a thread fails to acquire mutex of the FC core and
become a combiner, it waits for a combiner-thread
notification on a condition variable aggregated in the
announced record.

3: If a thread successes to acquire the FC core mutex this
thread becomes a combiner. The combiner processes all
announced records one by one. Having processed an
announced record, the combiner-thread notifies its awaiting
thread only with the help of the aggregated condition
variable.

4: The thread that have got a notification of its operation
completion restarts its work and examines the operation
completion flag. If the operation is still not executed, the
thread starts spinning again awaiting of the next notification.

operations completion. It is also supposed to decrease the
competitive struggle of threads for the synchronization
primitive. However, this strategy needs more memory for an
announced record then the previous strategies as the record
needs to aggregate 2 synchronization primitives (Fig. 6).

FC Kernel
global_mutex: Mutex

o

|
ExtendedPublicationRecord

ocalMutex: boost mutex
ocalCondvar: boost::cond var

Fig. 6. The strategy based on mutexes and condition variables, local for every
thread

Despite the fact that this strategy notifies the executed
record's thread only, after the thread restart we need to check
the operation completion flag because of possible spurious
wake-ups. The point is that there is an OS mechanism of live
and dead-lock prevention. If an operating system consider
threads to be alive or dead-locked it can awake all the threads
to rearrange them and to give other threads an opportunity to
acquire the synchronization primitive.

Aside from that, a global mutex leads to threads'
consecutive processing of the operation completion events
what can cause a performance decrease.

Parallel operation
execution Combiner-thread
Operation announcement
Try to acquire mutex
of the FC core

Annotations list
is Nt empty End of

annotations Nist not reached
Arnounced Operation._[ Notification of
completed

operation one waiting
execution thread

FC core mutex
acquiring failure

FC core mutex
acquired

Reached end of
annotations list

Waiting for an announced operation
Transition to the
waiting state

Repeated operation
announcement

Try to acquire mutex
of the FC core

FC core mutex
acquiring failure

Operation

Check operation
completion flag

.

Fig. 5. The strategy algorithm based on condition variables, local for every
thread

Operation
completed

D. Wait/notify strategy based on thread-local mutex and
thread-local condition variable

The last of investigated synchronization strategies is based
on a mutex and a condition variable local for every thread.
This strategy is alike the algorithms of tweak synchronization
of competitive data structures [4]. It is dedicated to exclude
needless iterations in the cycle of awaiting announced

56

Algorithm 3 The threads interaction algorithm

1: If a thread wants to execute an operation on the container,
it announces a record and tries to acquire mutex of the FC
core.

2: If a thread fails to acquire mutex of the FC core and
become a combiner, it waits for a combiner-thread
notification on a condition variable aggregated in the
announced record.

3: If a thread successes to acquire the FC core mutex this
thread becomes a combiner. The combiner processes all the
records one by one. Having processed an announced record,
the combiner-thread notifiers its awaiting thread only.

4: The thread that have got a notification of its operation
completion restarts its work and examines the operation
completion flag to avoid the former described situation with
live and dead-locks.

The state diagram and the transition diagram of this
synchronization strategy is shown on the Fig. 5.

III. SYNCHRONIZATION STRATEGIES IMPLEMENTATION

A. General implementation

The considered synchronization strategies are implemented
in “libcds® library in the following way:

Algorithm 4 The synchronization algorithms description
(Fig. 7)

1: When the FC core object created, an object of the selected
strategy class is created.

2:  The  publication record is extended to
ExtendedPublicationRecord by single public
sub-classing.

3: The object of ExtendedPublicationRecord is used in the
FC core.




PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

publicaition_record
+request value nRequest | L ____
+record_state nState |
+unsigned int nAge
+publication_record *pNext
+void *pOwner
+publicaition_record()

‘WaitStrategySMSCV
+_waitMutex: boost::mutex
+_condVar: hoost::condition_variable

+wait(rec: ExtendedPublicationRecord)
+notify(rec: ExtendedPublicationRecord)

UserPublicationRecord

ExtendedPublicationRecord

+SomeType *userData |

1
WaitStrategySMMCV
+_waitMutex: boost::mutex

+wait(rec: ExtendedPublicationRecord)
+notify(rec: ExtendedPublicationRecord)

ExtendedPublicationRecord
+_condVar: boost::condition_variable

! traits: Traits !

| Fec: UserPublicationRecord

WaitStrategyMMMCW

+wait(rec: ExtendedPublicationRecord)
+notify(rec: ExtendedPublicationRecord)

ExtendedPublicationRecord

+_condVar: boost::condition_variable
+_waitMutex: boost::mutex

Fig. 7. The synchronization algorithms implementation on the base of "Strategy"
design pattern[5][6]; SMSCV - Single Mutex Single Conditional Variable,
SMMCYV - Single Mutex Multiple Conditional Variable, MMMCV - Multiple
Mutex Multiple Conditional Variable

B. Adaptive strategy

Test results shown in the testing section lead to one more
type of strategies — the adaptive one. It works like “back-oft”-
strategy with “light” elements with small size and like
MMMCV with “heavy” elements, it based on “Int2Type”
metaprogramming pattern[8] and shown on the Fig. 8.

H traits: Traits |
| _rec: UserPublicatiorRecord |

AdaptiveStrategy

+wait(rec: ExtendedPublicationRecord}
+noetify (rec: ExtendedPublicationRecord}

-vold doWait(ExtendedPublicationRecord * pRec, INt2Ty pe<true>)
-doMotify(ExtendedPublicationRecord * pRec, Int2Type<true=)

-doWait(ExtendedPublicationRecord * pRec, Int2Ty pe<false>)
-doMotify(ExtendedPublicationRecord * pRec, Int2Type<false>)

ExtendedPublicationRecord

+_condvar: boost::condition_variable
+_waitMutex: boost::mutex

publicaition record
+request_value nRequest
+record_state nState
+unsigned int nAge
+publication_record *pMext
+vold *pOwner

+publicaition_record() )i
A

doMetify{pRec,
INt2Type<sizeof(
UserPublicationRecord::walue_type)
<= 1000*sizeof(int) >()

dowait{pRec,
It 2Ty pe<sizeof(
UserPublicationRecord:value_type)
<= 1000*sizeof(irt) >()

UserPublicationRecord

+SomeType *userData )

T

Fig. 8. Adaptive strategy

57

IV. SYNCHRONIZATION STRATEGIES TESTING

In order to test the developed synchronization strategies it is
needed to build a competitive data structure in terms of FC
method. For example, it can be a competitive
queue (FIFO).

To do it we develop a descendant class of the class
cds::algo::flat_ combining::container in the FC core to
implement interaction with the FC core and to aggregate the
FC core object and a standard consecutive queue object (like
std::queue). In this case an object of the FC core is instantiated
by the user extended record fc record and the one of the
implemented synchronization strategies.

To test the implemented strategies we created the following
tests:

e Reader/writer — a half of threads adds elements into the

container, another half of threads only deletes
elements

e Random - a random sequence of push/pop
operations

e Pop — operations of adding elements into the container
prevail

e Push — operations of deleting elements from the con-
tainer prevail

The usage efficiency analysis of the implemented strategies
is based on the following values:

e Duration — an average time of push/pop (ms/op) opera-
tions execution. This is the main usage efficiency factor
as it shows total FC running speed.

e Combining factor — a relation of the number of
executed operations to the number of the combiner
methods calls. So the combining factor defines the
efficiency of the FC in common: the more operations
one combiner executes and the less times a combiner-
thread changes, the more efficient processor resources
usage is.

e Redundant iterations — an average number of redundant
iterations in the cycle of waiting for the announced op-
eration completion. The main aim of the developed
strategies is this factor's minimization. As, at first, each
iteration accesses the FC core's synchronization
primitive (see "Flat-combining implementation in
libeds library™"). And secondly, as a thread is active and
consumes the processor resources, therefore it
interrupts a combiner-thread and increases overhead
costs of  threads management by  the
scheduler.

This factors set allows estimation of the developed
synchronization strategies usage efficiency in a most complete
way in the context of performance and resources
consumption.

The developed synchronization strategies were tested on
Intel Core i5-6402P processor with four physical cores and




PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

four hardware threads. Tests were built on Windows 7 by
MSVC 2013 compilers.

A. The results of testing a queue with “light” elements
The “light” element's structure:

struct SimpleValue {

size t nNo;
size t nThread;
}
Read/Write light test
90
80
70
it Origin FC
&0
3 e B a0 k- of f
2 50
- 1 =
a 25 /-— . —C Y
20 ./ -A“?é-&- FAMMCY
10 ?,K 4—-—_4______{
0 - £3 T T T
2 4 8 16 32 64 128

Thread count

Fig. 9. Duration of the FC with each of implemented strategies

Read/Write light test

1,0E+08
. 3

1.0E+07

——

1,0E+086 e Origin FC

1,0E+05 = Bacl-off

1.0E+04

SMSCV

1,0E+03 e 5 [ 11 CV

1,0E402 e WARAR T

Redauduat iterations

L0E+0L
1,0E+00 & 2 >
2 4 2 16 32 53 128

Thread count

Fig. 10. Number of redundant iterations in tests of “light” element queue

As can be seen on Fig. 9, the developed strategies even with
strict competition fall short of the efficiency in comparison
with the original implementation and the back-off strategy
implementation. Even despite the fact that they have 10 times
less redundant iterations at the worst and 10’ times less
redundant iterations at the best case (Fig. 10).

Copying 8 bytes of memory takes negligibly little time so
push/pop operations in such structure are executed much faster
than the context switching and threads state management.
Therefore wait/notify mechanism of the developed strategies
only prevents FC's work.

Analyzing the combining factor value while running the FC
with a back-off strategy (Fig. 11) explains that high results: an
average combining factor for back-off strategy is no more than
1.1. That means almost every thread having announces its
record becomes a combiner-thread and has time to execute his
own operation only. It can also be confirmed by the absence of
redundant iterations (redundant iterations = 0). So threads
parallel work comes to consecutive execution of operations
over the container.

Read/Write light test

) "’W/ = Origin FC
N/ i

0.5

25

=SMSCY

i 5 A I

Combining factor

== MMMV

a T T T T T 1
2 4 2 16 3z &4 123

Thread count

Fig. 11. A combiner-thread's work efficiency

B. The results of testing a queue with “heavy’ elements

To avoid former situation we created test of a parallel queue
with “heavy” structures as elements of the queue. And the
“heavy” structure is:

struct HeavyValue {
size t nNo;
size t nWriterNo;

static int pop buff[1000];
HeavyValue () :nNo(0), nWriterNo(0) {}
nNo; }

size t getNo() const { return

}i

Static array was used for simulating copy constructor that
takes a lot of time by this way:

HeavyValue (const HeavyValue &object):
nNo (object.nNo) {
for (int i = 0; 1 < array size; ++1)
this->pop buff[i] =
(int) std: : sqrt (ocbject.pop buff[i]) ;

The developed strategies tested “heavily”” show much better
results (Fig. 12) especially with a big number of threads and
hard competitive struggle for the resource. This occurs as in
this case the context switch time is small in comparison with
the time of operation execution and affects total performance
weakly.

Read/Write heavy test

= Origin FC

iy B 5 - 0

SMSCV

Duration
@
a
N
™

- ‘/‘/
40

% = .
20 —— |

=S MMV

=P M MY

2 4 2 16 3z 2 1z3

Thread count

Fig. 12. Duration of “heavy” elements queue in the developed strategies




PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

The original FC implementation and the back-off strategy
implementation significantly fall short of the performance in
comparison with the developed strategies, especially with a
big number of threads. That is caused by the frequent
accessing of a synchronization primitive and processor
resources usage what leads to increase in overhead costs of a
scheduler during threads managing.

Read/Write heavy test
_./""V"_-._—H

1,0E+09
1.0E+08 |
1,0E+07

M

= Origin FC

1,0E+06
1,0E+05

Back-off

SMSCV

MMCY

10E+02
LOE+01
1.0E+00

i [ W W O

Redauduat iterations

2 4 8 16 &4

Thread count

Fig. 13. Number of redundant iterations in the “heavy” elements queue tests

The number of redundant iterations in the original FC
implementation and the back-off strategy implementation is 10
times larger at the worst and 10° times larger at the best case
than in the developed strategies implementations.

C. Unsynchronized wait/notify mechanism problem

It is possible for a thread to not fall asleep before a
combiner-thread starts processing operation announced by this
thread. Then the following situation happens: a non-combiner-
thread checks operation completion flag, finds out it is not
executed yet and prepares to fall asleep. At this moment a
combiner-thread processes the operation, sets the flag as
completed and notifies the thread that announced the
operation. But the thread has already begun falling asleep and
it will never wake up as the operation has already completed
and the notification has already been sent.

To solve the problem it is needed to synchronize access to
an operation completion flag and to wait-notify mechanism's
methods. That means only one operation can be executed at
any moment:

e [f operation completion flag is not true, a thread falls
asleep, otherwise, it comes out of waiting cycle.

e Setting of completion flag and threads' notification is
done according to the selected strategy's
algorithm.

To synchronize access to the operation completion flag and
to wait-notify mechanism's methods an extra synchronization
primitive is used and it is a mutex associated with the selected
strategy.

Certainly, the solution slows FC's work down due to the
extra piece of code that is executed consequently. But that
solves the live-locks problem.

VII. CONCLUSION

According to the tests we can conclude that the developed
synchronization strategies based on the wait/notify mechanism

59

are effective on containers with big size elements (where the
size is comparable with sizeof(int)*1000) and algorithms that
need a lot of time for operation execution.

In contrary the usage of the developed strategies for
“light”-elemented containers is quite noneffective due to large
overhead costs on frequent context switching and threads
managing that lasts much longer than a simple operation over
a parallel data structure does.

The best testing results were gained for the strategy based
on mutex and condition variable aggregation into each
publication record. That is explained by the fact that the
aggregated mutexes are accessed in a parallel way in contrast
to other two strategies with one shared mutex. Multiple Mutex
Multiple Conditional Variable Strategy excludes redundant
completion notifications due to condition variable aggregation
into each record and the determined notification, therefore.
The next stable libcds version will include implemented
synchronization strategies.

In this paper we presented some aspects of FC and
synchronization strategies. We described some issues
regarding the efficiency of developed strategies depending on
container's element size. But some work has still to be done.
First of all, the adaptive strategy should be analyzed more
thoroughly in terms of taking into account some other aspects
of working with concurrent containers apart from element size.
Then it is interesting to analyze some existing systems which
use FC techniques, for instance, partitioned global address
space framework [7] and apply adaptive strategies implemen-
tation there.

ACKNOWLEDGMENT

Firstly, we would like to express our sincere gratitude to
libcds maintainer Maxim Khiszinsky for the comprehensive

answers about FC implementation and constructive
discussions. His guidance helped us to integrate described
strategies into the library and wuse existing library
multithreading test framework.
REFERENCES
[1] Danny Hendler, Itai Incze, Nir Shavit, Moran Tzafrir “Flat

Combining and the Synchronization-Parallelism Tradeoff”, in Proc.of
the 22nd Annual ACM Symposium on Parallelism in Algorithms and
Architectures, June 13-15,2010

“Lock-free data structures. Stack
http://habrahabr.ru/company/ifree/blog/216013/
“C++ developers meeting” Web: http://video.yandex.ru/users/ya-
events/view/2932

Maurice Herlihy, Nir Shavit. “The
Programming”. Morgan Kaufimann, 2012

evolution”, Web:

[2]
[3]

[4] Art

of Multiprocessor
[5] Erich Gamma, Ralph Johnson, John Vlissides “Design Patterns:
Elements of Reusable Object-Oriented Software”. Addison-Wesley
Professional, 1994

David Vandevoorde, Nicolai M. Josuttis “C++ Templates: The
Complete Guide”. Addison-Wesley Professional, 2002

B Holt, J Nelson, B Myers, P Briggs, L Ceze, S Kahan, M Oskin
“Flat Combining Synchronized Global Data Structures”, in Proc.of
7th International Conference on PGAS Programming Models,
October 2013, p. 76

Andrei Alexandrescu “Modern C++ Design: Generic Programming
and Design Patterns Applied”. Addison-Wesley Professional, 2001

libeds source on GitHub, Web: https://github.com/khizmax/libeds.

[6]
[7

(8]
[9]




