PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Real-Time Multi-Task Simulation in Forth

Sergey Baranov

SPIIRAS, ITMO University
St.Petersburg, Russia
snbaranov(@gmail.com

Abstract-Gained experience to rapid developing of software
tools for investigating real-time multi-tasking through
simulation of the behavior of respective formal models is
described. The approach is based on using the interpretative
programming language Forth which opens a wide range of
options to properly tailor the tool for particular purposes and
seems to have a much broader scope if properly used.

I. INTRODUCTION

Software simulation is an acknowledged method to
check feasibility of real-time multi-task applications. This
paper describes an experience of constructing such
simulator in Forth with the proprietary implementation
VFX Forth for Windows [1] as the instrumental platform.
A freeware option for the platform is gForth [2]. Forth was
selected as the implementations language due to the
flexibility it provides for implementing programming
solutions. Another advantage is that it allows to use only
fixed-point arithmetic in calculations and avoid floating
point with all its related issues and trade-offs. The simulator
employs a simple model of a multi-task application under
study which may use a particular scheduling mode with
various task priorities for allocation of a multi-core
processor computational resource and a particular access
protocol to access shared informational resources with
various kinds of priority inheritance. The simulator helps to
study multi-task application behavior and check whether a
given combination of the scheduling mode and priority
inheritance ensures application feasibility under the given
processor performance and system event scenarios. It may
also identify the minimal processor performance which still
ensures application feasibility under the given conditions.

By now, the nomenclature of scheduling modes and
inheritance modes implemented in the simulator consists of
two classical scheduling modes — RM (rate monotonic) and
EDF (earliest deadline first) — and three inheritance modes
— NI (no inheritance), DI (direct priority inheritance), and
TI (tranmsitive priority inheritance). However, it may be
further extended to simulate systems with other scheduling
modes on a multi-processor and/or multi-core platform and
protocols of access to shared informational resources [3].

Total effort for implementing this simulator was 4 staft-
month of relatively background work within which §
successive releases of the simulator with extending
functionality on bug fixing were produced. The current
version RTMT 8.55 is just 985 LOCs long.

II. SOURCE DATA

Simulation is based on components of four kinds:
resources, tasks, jobs, and events. Resources and tasks are
entities of the application under study; jobs and events are
entities created and operated on by the simulator. Resources
and tasks are also represented within the simulator with
respective entities. The application is assumed to run either
on a single-core processor platform with a certain processor
performance P in terms of "the number of standard
operations per second", or on a multi-core processor
platform with m>1 identical cores of the same performance
P. A scaling parameter determines the actual processor
speed. An application under study consists of a number of
tasks 1;. Each application task t; is characterized by its
timing period 7; — the minimal timing interval between two
consecutive activations of 7; determined by the current
scenario of system events, its priority Prio; — which usually
descends with increase of i, its weight W; — the amount of
processor work needed to accomplish this task, its deadline
D; — the maximal time period for the task to be completed,
and its phase Ph; — the offset of the first activation of this
task from the simulation starting moment (by default
Ph=0). Like the processor performance P, the task weight
W; is specified in the number of standard operations, and
may be converted into seconds: C=W;/P. Obviously, Vi
C<T;. The values T;, D,, and Ph; are specified in absolute
timing units (e.g., seconds) and do not depend on the
processor performance P.

Application tasks may access shared informational
resources identified with their unique ID numbers;
however, at any moment of time a shared resource may be
accessed by only one task. Tasks which do not share any
informational resources are considered to be independent
with respect to each other. To prevent simultaneous access
of two or more tasks to a shared resource, critical intervals
within the task code are established and guarded with
mutexes — a particular case of Dijkstra semaphores.

With this in mind, the structure of each task 7t; is
represented in the simulator as a finite series of k(i)
segments, each segment performing a certain amount of
computational work w>0 (the segment weight) and
terminating with one of the following system events: “Lock
r”, “Unlock r”, or “End”, r being the resource ID number.
The duration of processing a system event is assumed to be
negligibly small. A correct application should neither unlock
a resource not locked by this task earlier, nor lock it again

ISSN 2305-7254

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

without preceding unlocking it, nor leave it locked upon task
termination, and each task should terminate with the segment
“End”. Obviously, the task weight W; equals to the sum of
the weights of all its segments: W, =2 _, ;) w;.

An example of a typical application description in an
XML-type fashion [4] "with the postfix Forth flavor" is
provided in Fig. 1 for an application of 4 tasks 1y, 15, T3, and
T4, which share 2 informational resources r; and 7,
identified by their numbers 1 or 2. Tasks are enumerated in
this description in their natural order from 1 to 4.

<application
<task 5 =phase 15 =period />
1<lock 1 /> 1<unlock 1 /> <end 1 /> </task>
<task 5 =phase 35 =period /> <end 9 /> </task>
<task 3 =phase 25 =period />
1<lock 1 /> 2<lock2 /> 2 <unlock 1 />
1 <unlock 1 /> <end 1 /> </task>
<task 45 =period /> 2 <lock 2 /> 2 <unlock 4 />
<end 1 /> </task> </application>

Fig. 1. Specifying the application structure in XML-like fashion

Due to Forth specifics, all elements of this notation are
space separates. Actually, this specification is a Forth-text
submitted in a configuration file, definitions of its key
words being provided in the simulator realization.
Processing this text by the underlying Forth interpreter
(e.g., through the Forth word include with the file name as
its parameter) results in building the respective internal
structure which represents the application after appropriate
syntax checks which validate this text and complement it
with omitted default values (like =phase in task ;).

The code of the highest priority task 1; consists of 3
segments of 1 time unit each. Task description starts with
the word <task followed by specifications of task
parameters (5 =phase) and (15 =period). Parameter
enumeration terminates with the word /> and then follows
enumeration of task segments. The first segment (1 <lock 1
/>) consists of the operation lock for resource number 1 and
its duration is 1 timing unit; the next segment specifies
unlocking this resource (1 <unlock 1 />) after 1 timing unit
of computation, and the third segment terminates the task
(<end 1 />). The code of the task 1, consists of only one
segment of 9 timing units while task 13 consists of 5
segments with two critical intervals to access the resources
ry and r,, the intervals being embedded in one another. The
least priority task 14 consists of 3 segments and accesses
only the resource 7».

Task periods T}, T,, T3, and T, for task activations are 15,
35, 25, and 45 time units respectively with the phase shifts 5,
5, 3, and 0; deadlines are assumed to be equal to task
periods: D=T;. Tasks and resources are rendered by objects
of the type task and resource respectively and are created by

22

respective Forth words during simulator initialization when
reading an input file with the task descriptions:

: CreateTask (-- task-addr)
: CreateResource (n -- resource-addr)

III. OUTPUT DATA

The aim of the simulator is to calculate certain
application characteristics under various combinations of
scheduling mode, inheritance mode, the number of
processor cores and their performance, obtained as output
data from simulation sessions.

For each task 7; the derivative characteristics are
defined: its utility load u;=Cy/T; and its hardness H;=T/D;
which characterize tasks execution. If H;<1 then the
existence intervals of consecutive jobs st; and ;111; created
from two consecutive activations of the task t1; do not
intersect. The reverse condition H>1 means that they may
intersect. An important metric — the density of the whole
application: Dens=maxp(2;-1 , u;) — may be calculated too,
in order to compare different application structures and
implementations on their efficiency [5].

The ultimate purpose of simulation is to obtain data
on efficiency of various combinations of scheduling modes
and inheritance mode of the access protocol in various
scenarios of system events on single- and multi-core
processors. In particular, the dual problem to calculating the
application density — to determine the minimal processor
performance which still ensures the feasibility of the
application (i.e., that ¥i R<D;) under given conditions —
may be solved as well.

To calculate the application density, the initial interval
[a,b] for selecting the scaling factor f€[a,b] for the task
weights and processor performance is established. Prior to
the simulator run, the source values of task segment
weights w; (and therefore, the task weights ;) in task
descriptions and the processor performance P are
multiplied by this factor. Obviously, if the inequality R<D;
is violated for some i at the end-values a and b of the
interval, it is violated for all intermediate values. However,
for f~a=0 (which means an infinitely high processor
performance) these inequalities do hold for all i. Therefore,
the initial values are set to a=0 and b=U=2,_, ,u; with the
standard processor performance P=10° standard operations
per second. Then the first simulation iteration is performed
with the scaling factor /=(b—a)/2. If no violations of R;<D;
occurred, then a is set to f, otherwise b is set to f and
simulation is reiterated until the scaling interval shrinks to
just one value [a, a+1] in which case the scaling factor
equals to this found value a, the application density is
calculated accordingly, and the minimal processor
performance P which still ensures the application feasibility

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

is P=ax10° operations per second. It usually takes from 5 to
15 simulations to reach the resulting values.

IV. DATA STRUCTURES

The simulator uses ordered chained lists whose
elements consist of 3 cells: the link to the next list element
or NULL, the ordering value and the data specific to the
list. Elements in a list are ordered with respect to the
ordering value, starting with the smallest one. Lists are
defined with the defining word List:

: List (list-element-size, max-list-length --)

and use respective “methods” to add and retrieve elements
in lists created by this word:

: >List (new-elem-addr, list-addr --)
\ Place a new element into the ordered list
: List@ (list-addr-- elem-addr)
\ Get the first (heading) element of the list
: List> (list-addr-- elem-addr)
\ Delete the first element from the list
: List>> (ordering-value, list-addr--)
\ Find and delete a list element with this value

Static objects (tasks and resources) are created at the
simulator initialization from the task description file and are
modified during simulation.

A resource is rendered with an object of 4 cells: its ID
number, priority (reserved for future use), status (either
NULL if the resource is currently unlocked, or a reference
to the job description, which currently owns this resource
and locked it), and a possibly empty ordered list of job
descriptions, currently waiting for this resource to become
unlocked. Resources are stored in a special pool which
allows to easily enumerate them and to add a new one.

Tasks are represented with objects of various length
which depends on the number of task segments. It starts
with 10 cells followed by a series of 4 cells for each task
segment. The initial cells contain: task unique ID number i,
task period T; task weight in the number of standard
operations W;, task weight in seconds C; (depends on the
scaling factor f), task response time R; (is calculated during
simulation), task deadline D,, task phase P#;, the number of
executed task activations, and the number of task segments.
Cells for each task segment are: segment type (Lock,
Unlock, or End), segment parameter (the resource ID for
Lock/Unlock), segment weight in the number of standard
operations S;, and the segment time in seconds (recalculated
while scaling the task data with the scaling factor f).

Dynamic objects (jobs and events) are created during
simulation sessions as needed with the words Createlob
and CreateEvent :

: Createlob (task-addr--job-addr)

23

: CreateEvent ((resource-addr, job-addr, task-addr,
event-type, event-time -- event-addr))

The job object is represented with 10 cells: the job
unique ID, its current priority (it may change with the
priority inheritance scheduling mode), current segment
number which specifies the segment begin executed,
current segment expected termination time, current segment
start time, current segment used time, current segment time
yet to be used, reference to the respective task, number of
references to the job description, and a reference to a
resource which this job is waiting for or NULL if the job is
not waiting for a resource. Jobs waiting for the processor
form a chained list JobList in the order of their current
priorities. If the number of elements in this list is L and L>0
then the first /=min(L,K) jobs in this list are current jobs;
i.e., they own / cores of the multi-core processor during the
given interval if system time, while the remaining m—/ cores
stay idle (m being the number of processor cores). It's
interesting to note that core ordering is irrelevant.

System events are characterized by the time when they
occur. Events with the same timing form a group of time-
sake events. Four types of system events are considered: fo
activate a task (i.e., to form a job for this task and add it to
the list JobList of active jobs waiting for the processor), to
terminate the current job (and pass the processor to another
job in list Joblist, if any), fo lock a resource, or to unlock a
resource — and these activities are performed with
respective Forth words:

: TaskActivate (task-addr--)

: JobTerminate (job-addr--)

: Resourcelock (resource-addr, job-addr--)

: ResourceUnlock (resource-addr, job-addr--)

The event object which represents a system event
consists of 6 cells: the event unique ID, the scheduled time
for this event to occur, the type of the event (Activate,
Lock/Unlock, or End), a reference to the task object to be
activated or NULL, a reference to the job object to be ended
or NULL, and a reference to the resource object to be
locked/unlocked or NULL. The chained list EventList of
system events ordered with respect to their time moments
when they scheduled to occur is maintained by the simulator.

V. THE SIMULATOR

The architecture of the simulator is presented in Fig. 2.
Simulator initialization consists in selecting the desired
combination of the scheduling mode and inheritance mode
of the access protocol, setting the respective simulator
constraints, reading the task description file, and forming
the respective resource and task objects. Then the initial list
of system events EventList is formed which consists in
activation of the all tasks at the moments of system time

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

defined by their phase shifts. Counts for their maximal
response times are set to zero and all resources are set to be
unlocked.

Eventlist

I Configure and initialize

While-
condition
OK?

time=t,

time=t,
t<ty<ty<_

time=t,

Events: Activate a task (create a new job)
Lock a resource
Unlock a resource
Terminate a job

| Job, H Job, |“—'|m—>

Prio(Job,)zPrio(Job,)zPrio(Jobs)=...

Advance time
Process events
Process jobs

. -) JobList
Terminate simulation

and print-out results

(#Jobs < JobLimit) A (#Violations

Job: Consume processor time by task segment
< ViolationsLimit)

While-condition: (Time < TimeLimit) A
and add a new event to the EventList

Fig. 2. Simulator architecture

The major simulator loop does the following. The first
group of time-sake events in Eventlist is considered, the
simulator system time is set to this time moment and all
system events from this first group are processed one-by-
one. Processing depends on the event type: activate a task,
terminate a job, or lock/unlock a shared resource.

Activating a task. A new job is created from this task
referred to by the event with its planned starting time equal
to the current system time and is added to JobList with its
priority, while a new event is added to EventList — to
activated the next copy of this task at the moment of time
not less than the current time plus the task period T:.

Terminating a job. The response time of the task
referred to by the respective job object is updated: the
difference between the current system time and the moment
when this job was created and added to JoblList (the
response time which consists of the time when the job
owned the processor plus the time it waited for it) is
calculated and the maximum of this value and the response
time already stored in the task referred to is stored as the
new value of the task response time. If this exceeds the
task deadline D;, then a violation of the task feasibility is
registered. The considered job is deleted from the JoblList.

Locking a resource. If the resource is unlocked, then it
becomes locked by this task; otherwise, the job is moved
from the JobList to the ordered list of jobs waiting for
unlocking of this resource.

Unlocking a resource. If the ordered list of jobs waiting
for unlocking of this resource is not empty, then the first
job form this list is moved from it back to JoblList
according to its priority and the resource becomes locked
by this job; otherwise, the resource becomes unlocked.

Upon completion of the event processing, the
considered event is deleted from EventList. After all time-
sake events have been processed, JoblList, which may have

24

changed as a result of previous event processing, is
considered unless it is empty.

If JoblList is not empty then the first job from it (which
currently owns the processor) is selected and the residue of
the processor time not yet consumed by its current segment
is considered. This value determines the moment of the
segment termination. If this value is greater than the time
of the next time-sake group of system events in EventList
then this residue is decremented by the remaining time till
this event group; otherwise, a new event corresponding to
this segment is added to EventList for this moment of
segment termination and the next job segment if any
becomes its current segment.

Emptiness of JobList means that the processor is idle
from this moment till the next time-sake event group in
EventList. Upon completion of processing the first job of
Joblist (if any) the major loop is reiterated. The loop
terminates upon exhausting the time limit of the simulation
session or when a specified number of created jobs is
reached (which of these conditions occurs earlier, if both
limits are specified).

TimeLimit=25 JobLimit=0
ViolationLimit=1
SchedulingMode=RM Inheritance=NI
Configuration file name:
c¢:\MPE\App_4t2r.txt

Time=0 Proc=0 for 0A 4.1

Time=2 Proc=4.1for2 L 4.1 of 2
Time=3 Proc=4.1for1A 3.2

Time=4 Proc=3.2for1L3.2 of 1
Time=5 Proc=3.2for1A13A24
Time=6 Proc=1.3for1W 1.3 of 1
Time=15 Proc=2.4 for 9 E 2.4
Time=16 Proc=3.2 for 1 W 3.2 of 2
Time=19 Proc=4.1for3U4.10f 2 L
3.20f2

Time=20 Proc=3.2 for 1 U 3.2 of 2
Time=21Proc=3.2for1U3.20f 1L
1.30f1

Time=22 Proc=1.3 for1U 1.3 of 1
Time=23 Proc=1.3 for 1 E 1.3
Time=24 Proc=3.2 for 1 E 3.2
Time=25 Proc=4.1for 1 E 4.1
Time=25 Hardness=1,0000
1/Hardness=1,0000 Density=0,6056
ScalingFactor=1,0000

ERROR: Deadline violation in Task 1
ok

TimeLimit=25 JobLimit=0
ViolationLimit=1
SchedulingMode=RM
Inheritance=DI Configuration file
name: c:\MPE\App_4t2r.txt
Time=0 Proc=0for 0 A 4.1
Time=2 Proc=4.1for2 L 4.1 0of 2
Time=3 Proc=4.1for 1A 3.2
Time=4 Proc=3.2for1L3.20f 1
Time=5Proc=3.2for1A13A24
Time=6 Proc=1.3 for1W 1.3 of 1
Time=7 Proc=3.2 for 1 W 3.2 of 2
Time=10 Proc=4.1 for 3 U 4.1 of 2
L3.20f2

Time=11 Proc=3.2 for 1 U 3.2 of 2
Time=12 Proc=3.2 for 1 U 3.2 of 1
L1.30of1

Time=13 Proc=1.3for 1 U 1.3 of 1
Time=14 Proc=1.3 for 1E 1.3
Time=23 Proc=2.4 for 9 E 2.4
Time=24 Proc=3.2 for 1 E 3.2
Time=25 Proc=4.1 for 1 E 4.1
Time=25 Hardness=1,0000
1/Hardness=1,0000
Density=0,6056
ScalingFactor=1,0000 ok

Fig. 3. Two simulation sessions with different priority inheritance

The results of simulation — task maximal response time,
number of deadline violations, the application density, and
other statistics data are displayed. A simulation log may
also be displayed. When any system event is processed, the
respective time and other accompanying data are printed-
out. All these data may be easily copied into MS Excel for

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

a graphical representation of the obtained results and
execution log.

There are the two logs of simulator runs in Fig. 3 — for
two different protocols of access to shared resources: NI
(no inheritance) and BI (basic priority inheritance) as they
are recorded by the simulator. The number after "Time=""is
the time of an occurring system event denoted by one of the
letters: A — activate, E — end, L — lock, U — unlock, or W —
wait to lock an already locked resource, followed by the
event parameter. The job ID is displayed as two numbers
(the task number and the unique job number separated with
a period). The section "of" is followed by the resource
number to be locked or unlocked, while a number after
"for" is the activity duration terminated with this event.

This application, when simulated twice with different
access protocols, demonstrates two different behaviors: a
violation of the specified deadline 15 for the highest
priority task 1; under the protocol NI — Fig. 3 (left side),
and correct work with no violations under the protocol DI —
Fig. 3 (right side).

Fig. 4 demonstrates impact of two scheduling modes on
the application density for the same application of 4 tasks
and 2 shared resources defined in Fig. 1 when running on a
single-core processor. The output simulation data were
copied into an MS Excel file to obtain these charts. Data for
application hardness and respective density values for the
two scheduling modes are in the right-hand columns of the
chart. As one can see, there's no big difference in the
application density between the two scheduling modes RM
and EDF for this particular application. Density as a
function of hardness™ grows nearly linearly with two
plateaus and then the growth stops after hardness '=0.75.
As one can see, this application cannot reach 100% density
its maximum is 0.9083 with the application
hardness=1/0.75=1.33 and it does not change with further
decrease of hardness (i.c., increase of hardness™), which
means that the processor would be inevitably idle for at
least =10% of time while executing this application.

1/H| RM | EDF

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

0.0336
0.1009
0.1682
0.3028
0.3028
0.3028
0.3028
0.3028
0.3784
0.4541
0.5046
0.6392
0.7065
0.7568
0.8326
0.9083

0.0336
0.1009
0.1682
0.3028
0.3028
0.3028
0.3028
0.3784
0.4541
0.5046
0.5719
0.7065
0.7568
0.8326
0.9083
0.9083

Density/Hardness™ for 4
Dependent Tasks
e RV] == EDF

o

/’
Sz
/_AV
P

0,00

1,00

0,80

0,60

Density

0,40

0,20

0,00

025 050 075 100 125

Hardness™

Fig. 4. RM vs. EDF for same application of 4 tasks with 2 resources

25

Another example of using MS Excel for better graphics
is presented in Fig. 5 for a study of dependency between
application density and the number of processor cores. As
one can see, a substantial difference turned out to be
between single-core (the lower line) and two-or-more-core
processors (all upper lines), while increasing the number of
cores did not impact the density of an application with the
given task structure.

Density/Hardness for 10 Tasks

#Cores=4 =—#Cores=10

#Cores=1

#Cores=2 #Cores=3

1,2

1,0
0,8

YR R R e ——
ﬂ/_l_l_l_l/'

0,6

Density

0,4

0,2

0,0

Hardness*

Fig. 5. Application density and the number of cores

These examples demonstrate the remarkable flexibility
of Forth for interoperation with other powerful tools for
computer-aided analysis of data.

VI. FOUR DINING PHILOSOPHERS

This classical puzzle, first proposed by E.Dijkstra as
“Five Dining Philosophers” [6], demonstrates the situation
of mutual blocking under certain scenarios of dependent
task behavior with more than one respective processes.
Let’s consider 4 iterative processes, each with two alternate
activities called “think” and “eat”, the latter assuming
simultaneous access to 2 of 4 shared resources (called the
left and the right fork for this philosopher) for a certain
period of time. Access to the resources is performed via
critical intervals guarded with respective mutexes.

The puzzle works for any number of philosophers
greater than 1. Let's take 4 (a bow to Forth); with the
proposed technique this may represented as 4 tasks 71y, o,
13, and 14 (the philosophers), which share 4 informational
resources ry, r,, 3, and r4 (the forks). Task phases are 10, 7,
4, and 1 respectively; in 2 units after its start the task T4
locks the resource r; and after 4 units more it locks the
resource r,. Then after 20 time units it unlocks 7, and in 68
units more it unlocks »,. After 1000 time units or more
since its start, the task T, reiterates. Other tasks behave
similarly with 73, 79, and 85 time units rather than 68 for
unlocking their second resource (left fork). In the
formalism of Fig. 1 the behavior of task 1, may be
specified as (others are similar):

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

<task 10 =phase 1000 =period />
1<lock2 /> 2<lock4 />
1 <unlock 20 /> 2 <unlock 68 />

<end 2 /> </task>

With the

specified phases

and timings

for

locking/unlocking resources, a clinch occurs at time=25, as
Fig. 6 displays this with the log obtained by the simulator.

TimeLimit=1000000 JobLimit=0
ViolationLimit=0
SchedulingMode=RM
AccessProtocol=PI

Configuration file name:
c¢:\MPE\App_4PhD.txt
Time=1Proc=0for1A4.1

Time=3 Proc=4.1for2L4.10f 4
Time=4 Proc=4.1for 1 A 3.2
Time=6 Proc=3.2 for2 L 3.2 of 3
Time=7 Proc=3.2for1A 2.3
Time=9 Proc=2.3for2 L 2.3 0of 2
Time=10 Proc=2.3for1A 1.4
Time=12 Proc=1.4for2 L1.40of 1
Time=16 Proc=1.4 for4 W 1.4 of 2
Time=19 Proc=2.3 for3W 2.3 0of 3
Time=22 Proc=3.2 for3W 3.2 of 4

Interpretation/Comments

Rate Monotonic with
Priority Inheritance

Task 4 (job 4.1) activates
Task 4 (job 4.1) locks res.4
Task 3 (job 3.2) activates
Task 3 (job 3.2) locks res.3
Task 2 (job 2.3) activates
Task 2 (job 2.3) locks res.2
Task 1 (job 1.4) activates
Task 1 (job 1.4 locks res.1
Task 1 (job 1.4) waits res.2
Task 2 (job 2.3) waits res.3
Task 3 (job 3.2) waits res.4

Time=25 Proc=4.1 for 3
Mutual clinch for job 4.1 on
resource 1 ok

Clinch detected for task 4
(job 4.1) when it tried to
lock resource 1 at time=25

Fig. 6. System log for the 4 philosophers puzzle

The resource status displayed by the word .resources
confirms this clinch. As one can see there’s a vicious circle
of locked resources with mutually waiting jobs:

Resource_1 Prio=0 Status=Job 1.4 JobsWaiting=NULL

Resource_2 Prio=0 Status=Job 2.3 JobsWaiting=Job 1.4
Resource_3 Prio=0 Status=Job 3.2 JobsWaiting=Job 2.3
Resource_4 Prio=0 Status=Job 4.1 JobsWaiting=Job 3.2

This example demonstrates the necessity of certain
means for dynamic detecting of clinches in multi-task
applications and feasibility of such preventive measures
which increase the robustness of the overall system and
allow to use more efficient data access protocols and
scheduling modes.

VII. CONCLUSION

The simulator was written in ANS-Forth 200x [7] with
VFX Forth for Windows, version 4.70, provided to the
author at the courtesy of MPE [8], and is just 985 lines of
code under the respective coding standards. It uses only
fixed-point arithmetic and works remarkably fast on a PC.

26

To avoid memory overflow, the simulator uses its own
simple subsystem for memory allocation and reuse for
chained list elements, jobs and events. Further work will be
focused on improving the user interface, extending the
nomenclature of scheduling modes and access protocols of
this simulator, and transition to simulation of multi-core
and multiprocessor platforms, as well as running more
experiments with models of real-time multi-task
applications.

The described programming solution based on data
structures EventList and JobList which control the simulation
process turned out to be both effective and efficient, so it is
worth for reuse in other applications or subject domains.
The described simple system log allows for relatively easy
detecting violations and errors in the simulation process and
helps in debugging the simulator and its input data.

This Forth-based simulator was developed in parallel
with another one developed on C# and results of these two
dissimilar implementations were compared on a number of
benchmarks. One of the differences between the two
implementations was that the Forth-based one used only
fixed-point arithmetic while the that in C# used floating-
point. The results turned out to be remarkably close taking
into account the difference in rounding rules.

Though "production quality" of the developed software
may be argued, the total number of real defects found in
fixed (4 major and 5 minor) after intensive testing suggests
high enough quality of this tool.

This work was partially financially supported by
Government of the Russian Federation, Grant 074-U01.

REFERENCES

VFX Forth for Windows. User manual. Manual revision 4.70,
19 August 2014. — Southampton: MicroProcessor Engineering
Limited, 2014. — 429 p.

gForth. Free Software Foundation, Inc. — [computer resource]
https://www.gnu.org/software/gforth/ .

Andersson B., Baruah S., Jonsson J. “Static-Priority Scheduling
on Multiprocessors”, Proc. of 22nd IEEE Real-Time Systems
Symposium. — London, 2001. — P.193-202.

Nikiforov V.V., Shkirtil V.I. “Specification of interfaces in
real-time software applications by XML forms”, SPIIRAS
Proceedings, 2009, issue 11. — P. 159-175. (In Russian.)
Baranov S.N., Nikiforov V.V. “Density of Multi-Task Real-
Time Applications”, Proceedings of the 17th Conference of
Open Innovations Association FRUCT, Yaroslavl, Russia, 20-
24 April 2015. - P.9-15.

Dijkstra E.W. “Hierarchical ordering of sequential processes”,
Acta Informatica 1(2), 1971. — P.115-138.

Forth extension proposal RfDs and CfVs. — [computer
resource] http://www.forth200x.org/ .

MicroProcessor Engineering Limited. — [computer resource]
http://www.mpeforth.com .

(1

(2]
(3]

(4]

(3]

(6]

(7]
(8]

