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Abstract—The driving forces for this project are demands for
a hardware, reconfigurable, high performance, low cost and low
power solution that could be used in a widest range of Internet of
Things (IoT) devices. The solution should be able to secure
computer networks against emerging threats and vulnerabilities,
sustaining privacy and trust. This paper presents an approach for
developing a novel hardware platform for Ethernet-based
network firewall security services for IP networks. The article
highlights functional and structural levels of the proposed
hardware architecture, performance estimations and a trade-off
between performance and hardware cost. Some implementation
details, including HDL used, testing approaches and design tools
are provided as well.

I. INTRODUCTION

The innovative field of telecommunications brings new
trends and technologies with ever increasing speed: cloud
computing, virtualization, Internet of Things (IoT) and Internet
of Everything, modern wireless solutions, etc. [1]. With
explosively expanding network connectivity the traditional
question of cyber security (the ability to properly secure
computer networks against emerging threats and
vulnerabilities, sustaining privacy and trust) becomes even
more important, both for personal and enterprise
uses.

Firewalls address this problem and provide an effective
first-level barrier of the network security to support an
established (presumably well-crafted) security policy. A
firewall is a utility that connects two networks and filters
network traffic between the two networks according to the
provided security policy. In general, its aim is twofold: firstly,
the firewall protects data and computing infrastructures of the
protected network from external malicious attacks, and
secondly — restricts unwanted accesses from the protected
network to the external one (Fig. 1).

However, there are two main problems [2]. The first one is
that the number of different types of malicious network attacks
constantly increases and requires the growth of applied
security policies complexity. The second one is that with the
introduction of IPv6 and the speed of network connections
increasing up to 1G and 10G the volume and throughput of
network traffic increases as well. This puts a huge
computation load on a firewall and makes it a bottleneck of a
network infrastructure.

The common criteria of a good firewall protection are:
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Fig. 1. Concept of firewall

e how high is the speed of applying the rules;
e how easy is the maintenance of the rules database;
e how secure the firewall itself is.

Software firewalls can no longer satisfy the demands of
critical network applications. Lately a popularity of the field
programmable gate arrays (FPGA) technology enabled
development of hardware firewall solutions. Advantages of a
hardware firewall are high performance, low latency, low cost
and low power for “green communications”. Those advantages
result from the ability of a single compact device to process a
large number of concurrently analyzed fields and rules, and a
large number of concurrently analyzed network channels. A
disadvantage of such a hardware firewall is a lack of
scalability — it can be used for perimeter firewall models only,
where either one, or a limited set of firewalls see all the traffic
coming to and from the protected network. The increase of
performance and simplification of maintenance make up this
deficiency of scalability though.

This paper presents a new FPGA-based platform for
network security devices, designed for firewall and intrusion
detection functions. The goal of this work is to have a firewall
device, which will be easy to setup and will have secure
configuration and reconfiguration procedures. Although the
implementation of packet filtering and other algorithms
constitutes an important part of current research in the field,
this paper focuses mainly on the architecture of the platform,
which aim is to provide a possibility to implement the widest
range of algorithms.

Another aim of the platform is to support the modern trend
of system-wide collaboration for a network security task [3],
when individual applications get a global view of dynamic
security situations through the multi-point collaboration over
the network structure.

The rest of the paper is organized as follows. Section II
gives an overview of basic firewall terms and investigates the
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current hardware implementations. Section III highlights
concept, top-level architecture of the proposed firewall
platform and functional diagram of the core unit of the
platform. Section IV contains more detailed descriptions of
internal architecture of core unit, some performance
estimations, possible trade-offs between performance-
hardware cost, and gives some basic information regarding
implementation details (hardware description language used,
tools). Summary is presented in Section V.

II. STATE OF THE ART

A. Firewalls — basic terms and definitions

A computer network firewall is a component or set of
components that restrict access between a protected network
and the Internet, or between other sets of networks [4]. This
means that a firewall serves as a rule checker for traffic
coming in and out of the network under protection. A set of
defined rules (SoDR) guarantees that the traffic conforms to
the desired security policy. Different types of firewalls vary in
functionality, application and supported network architecture.
This section covers the necessary basic principles of firewall
implementations.

Simple firewall can be done as a packet-level filter, which
selectively accepts or denies packets according to information
contained in the header (simple packet filter) or in the body of
the packet (deep packet filter). Such filtering is usually done at
network and transport layers. For example, a firewall can
block all connections from a certain untrusted network based
on the IP source address field of the packet. Another example
of a simple packet filtering is an inherent function of VPN
implementations aimed to determine which packets will get
sent through the VPN. A virus or spam protection, which
searches for certain patterns in the packets’ data, is an example
of a deep packet filter.

Another elaborate dimension of a firewall complexity is a
stateful firewall that employs state machines to track protocol
connections. In this case a firewall tracks and manages a
sequence of packets that belong to one connection, like in a
TCP protocol.

Usual auxiliary functions of a firewall are network address
translation (NAT), event logging, intrusion
detection/prevention and quarantining.

Many firewalls are created for protection of a single host.
Usually such a personal firewall is a kernel-level software on a
user’s workstation. It monitors network activity and blocks
suspicious processes. An alternative to workstation firewall
could be an appliance firewall — a dedicated device external to
the host that is to be protected. Opposed to a localized
instrument, a firewall can be distributed, for example over
several hosts of a network, and employ security policies by
several individual network endpoints.

A firewall can act as a “bump in the wire” in case of a
bridging firewall, which works transparently to the rest of the
network elements. Or a firewall can operate with a dedicated
IP address and replace a traditional router in case of a proxy
firewall, which on demand creates and manages client’s
connections to the remote network destination.
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In most cases a firewall runs on the same hardware as user-
level applications. To keep up with high-speed networks the
network protection tasks typically require multiple dedicated
multi-core processors, which still have a limited performance
and are power-hungry. During peak network utilizations
and/or for critical applications low latencies and high
throughput of the firewall may become indispensable. A
hardware acceleration of firewall functions can address this
need.

The growth of FPGA technology enabled a hardware
implementation of firewalls and intrusion detection
systems [3]. Such hardware accelerations provide a flexible
implementation of a highly desirable parallelism for a packet
data processing with extensive sets of rules. It has been shown
that hardware packet-filtering engines provide capacity and
speedup, which are impossible for fully-software
implementations.

B. Hardware firewall solutions

At the moment a lot of research and design efforts both
from academia and industry go towards hardware
implementation of various firewall functions. This section
covers questions of some recent research efforts in the field
with the focus on architectures of the solutions. The common
research goals are to make hardware designs as compact and
efficient as possible and to have a firewall solution, which will
be simple to support and update.

A typical scheme for implementation and prototyping is to
have an FPGA with a firewall engine as a co-processor in
embedded solution. Thus a management task lies on a
software part of the system. An example is a hardware based
firewall and a rate-limiting engine by Park et al. [5], where
filtering is implemented on FPGA and a rule management is
software-operated in embedded CPU. Another example is a
processor-based embedded system with real-time operating
system by Ajami and Dinh [6], which is designed to achieve
highly customized and on-the-fly configuration change in the
firewall. Thinh et al. [7] have created a fully-hardware
architecture for the virus signature matching engine, where a
system update requires only an update of on- and off-chip
memory contents.

Another approach is to provide an ability to change a
configuration of FPGA for the necessary firewall updates.
Dramicanin et al. [8] explore an interactive reconfigurable
firewall concept. Jedhe et al. [9] describe an embedded system
on FPGA-based platform, running Linux with the packet
classification in hardware, where the firewall rule update
involves only memory re-initialization in software without any
hardware change.

The next approach, which targets firewall maintenance, is
to automatically generate the hardware components of the
design in response to changing security policies. The
motivation behind this approach is the reliability of a firewall
solution. In order to simplify the updates during the support
stage of a firewall lifecycle, the process of manual design of
the hardware is fully eliminated. For example, Kayssi et al.
[10] present a software tool, which translates a set of rules into
hardware VHDL blocks for packet filtering.
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Another topic is an effective mapping of a certain
algorithm onto FPGA resources. For example, Cho and
Mangione-Smith [11] achieve a significant shrink of the size
of FPGA deep packet filters, which perform complex data
search and analysis, by sharing the common sub-logic and
using a memory-based architecture. Prasanna, Jiang et al. have
done an extensive work [I12]-[16] on packet classification
engine for FPGA, which provides dramatically reduced
memory requirement. Jedhe et al. [9] achieve a scalable and
high performance architecture by using a reconfigurable
hardware implementation of Extended Ternary Content
Addressable Memory. Sato et al. [17] present an
implementation of a wave-pipelined firewall to achieve high
clock frequencies.

The driving force for presented project is the necessity to
have hardware reconfigurable, high performance, low cost and
low power consuming solution that could be used in a widest
range of [oT devices.

III. FIREWALL PLATFORM

A. Concept of firewall platform

Top-level architecture (Fig.2) of the proposed firewall
platform is based on System-on-Programmable-Chip (SOPC)
devices provided by Altera Inc. or Xilinx Inc.

Key features of the platform are hardware re-configurability
and extensibility. These features are achieved by using SOPC
devices, expansion modules and “soldering-by-demand”
components.

Three basic configurations of the platform are defined.

The smallest configuration (SC) comprises Field
Programmable Gate Arrays (FPGA), Ethernet Network 1 & 2,
and SD card. SD card keeps SoDR and some statistical data
from SoDR engine. Personal Computer (PC) with special-
purpose Graphic User Interface (GUI) is wused for
programming SoDR and for statistical data analysis and
visualization.

The typical configuration (TC) comprises Field
Programmable Gate Arrays (FPGA), Ethernet Network 1 & 2,
SD card, DDR3 memory (up to 1GB), Ethernet (ETH) and/or
USB connectors for remote control. SD card keeps operating
system (OS) for embedded processor, SoDR and some
statistical data. In this configuration, an external PC with
special-purpose GUI should be connected to ETH or to USB
for SoDR programming and for statistical data analysis and
visualization.

The expanded configuration (EC) could include up to 16
additional Ethernet connectors for protected and external
networks respectively and additional DDR3 memory (up to
1 GB).

SC and TC configurations are intended for “single-point™
network connection (Fig.3). In “single-point” network
connection there are one connector for the protected network
and another one for the external network. SC could be used for
the smallest embedded applications, including mobile
applications such as robotics, which need high security level
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and have fixed, or nearly fixed, network environment. TC well
suits embedded devices with additional requirements for
simplicity of rebuilding and reprogramming SoDR, i.e. for
variable network environment.
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Fig. 2. Top-level architecture of firewall platform
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Fig. 3. “Single-point” network connection

EC is intended for “Multi-point” network connection
(Fig. 4). In “Multi-point” network connection there are some
connectors for external and protected networks. It could have
one or several reconfigurable core(s) implemented in FPGA.
This configuration well suits complex network security
solutions with high-speed processing, small form-factor and
low cost demands.
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Fig. 4. “Multi-point” network connection
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Fig. 5. Reconfigurable core of firewall platform

The reconfigurable core for the firewall platform (Fig. 5)
comprises at least logic array (Custom/User Logic), Debug
unit and High-Speed Transceivers. Generally, it could include
DDR3 interface(s), soft and/or hard processors and on-Chip
memory as well.

FPGA based solution could be wunsuitable for the
applications with high volume manufacturing demand. For
such application, a chip scale solution (Application Specific
Integration Circuits — ASIC) should be used. In this scope, the
proposed platform provides extremely good possibilities for
ASIC prototyping.

The platform has a small form factor (approximately 2 by 3
inches). It could be reconfigured from SC to TC by soldering

additional devices and from TC to EC by connecting
expansion modules.

B. Architecture of reconfigurable core
The architecture of the reconfigurable core from the
functional point of view (Fig. 6) includes:

e Ethernet Interface Unit — responsible for connection
with Protected and External Networks;

¢ Delay Lines — for Ethernet packet buffering;
e & —gate AND;

e PPar — Ethernet packet Parsers. Unit is responsible for
reading values of fields and parameters extraction;

e SoDR — Set of Defined Rules;

e RCE - Rules Checker Engine. Unit provides a
decisions on filtering;

e Control Unit — Service functions: rules database (SoDR
loading), data collection (getting statistical data from
RCE/PPar), and maintenance interface over remote
Ethernet connection or USB security connection.

IV. IMPLEMENTATION DETAILS

A. RCE architecture

The most time critical component, from the overall
performance point of view, is RCE. That is because it should
compare “properties” — values/rangers of values of the current
Ethernet packet fields with hundreds of rules.

A rule is defined as a set of fields, which need to be
compared with parameters, and values of incoming Ethernet
packet. The fields could have different lengths (from 8 bits up
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to 48 bits). The number of the fields defines a complexity of
the single rule (Table I).
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Fig. 6. Functional structure of reconfigurable core

TABLE I. FIELDS OF RULES

Field Length (bits)
Dstmac 48
Srcmac 48
Ipproto 16
Ethproto 8

srcip4 32

dstip4 32
Srcport 16
Dstport 16

Icmp/type&code 16

Each of the fields could be compared with a value of
incoming Ethernet packet in accordance with any of the
following approaches (Decision Type):

e AV —any value (up to 4 different values);
e EN - enumeration (a set of consecutive values);
e RA —range of values.

To achieve a maximum throughput two approaches for
building RCE should be applied: concurrency and pipelining.

Having nine fields in each rule and up to 1k rules in total
makes it necessary to build RCE, which consists of Field
Decision Units (FDU) integrated in Decision Lines (DL), up to
1k DLs, and Decision Make (DM) unit generating the final
decision (Fig. 7).
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Fig. 7. Top-level structure of RCE

RCE consists of up to 1k DLs working concurrently with
pipeline stage between DLs and DM. Each DL is nine
concurrently working FDUs (Fig. 8). The architecture of FDU
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is a pipeline of the following units: AV, EN, RA (working
concurrently) and D — decision unit. The algorithm of the unit
D pays attention to AV, EN, RA results and Decision Type
value.
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Fig. 8. Structures of DL and FDU

B. Performance-area trade-off

The architecture presented above, which is a fully
concurrent implementation of RCE, provides the highest
performance (measured in number of PPar per second
processed). Performed evaluations show that:

e One PPar is processed per one clock cycle.
¢ Delay of PPar processing is six clock cycles.

e Maximum frequency (minimum clock cycle) is about
300 MHz (is about 3 us). It is highly dependent on the
target device family and the device’s speed grade. The
performance is practically identical for devices from
Altera and Xilinx having the same parameters.

The drawback of the fully concurrent implementation of RCE
is the cost of hardware. It could be measured in Logic Elements
(LE) — key functional units of any FPGA. LE comprises one
Look-up-table with four-inputs and one flip-flop. The number of
LEs could be easily translated to money, since this number is
directly proportional to the cost of the device.

From the other hand, for “single-point” network connection,
even if we would have Gigabit Ethernet connections, the
maximum frequency of PPar arriving is less than 1 MHz.

It means that we can dramatically reduce the hardware cost of
RCE implementation without the performance degradation. The
obvious approach is to use a parallel-sequential pipelined
architecture.

Taking into account that there is an overhead for sequential
implementation (when one DL is used recursively) of RCE, we
used the following estimation: if there are 256 Rules and PPar
frequency is equal or below 1 MHz, then one DL will be
sufficient for RCE implementation.

Estimations of PPar frequency for given DL and Rules
numbers are provided in Table II. Where “x” means that PPar
frequency is insufficient, i.e. below 1 MHz.

This table could be used as an entry point for finding trade-off
between hardware cost and RCE performance.

Having a positive slack between desired PPar frequency and
achievable performance (PPar frequency highlighted in Table II)
it is possible to find trade-off between performance, hardware
area and power consumption. Taking in mind that power
consumption is directly proportional to the frequency it is
possible to reduce power consumption of RCE by reducing
working frequency. Table III provides estimations of RCE’s
working frequency for the following conditions: PPar frequency
equals 1 MHz, given DL and Rules numbers. Here “X” means
unsupported conditions.

TABLE II. PPAR FREQUENCY

PPar Rules number
Frequency
(MH2) 128 | 256 | 512 | 1024
1 2 1 X X
. 2 4 2 1 X
2 4 8 | 4 [ 2 1
£ 8 l6 | 8 4 2
= 16 | 32 | 16 8 4
=2 [ 32 [e4 [ 32]16] 8
64 128 | 64 32 16
128 | 256 | 128 | 64 32

TABLE III. WORKING FREQUENCY

Working Rules number
Frequency
(MHz) 128 | 256 | 512 | 1024

1 128 | 256 X X
2 64 128 | 256 X

5[4 [ 3 |64 |128] 256
E [ 8 |16 [ 32 ] 64 [ 128
S L1686 [ 32 [ o4
23248 16| 3
64 | 2 [ 4 [ 8] 16
28 [ 1 [ 2] 4 8

This table could be used as an entry point for finding the
lowest acceptable working frequency for the given conditions.

C. Implementation details

The pointed fully concurrent-pipelined architecture and a set
of parallel-sequential pipelined architectures are implemented in
System Verilog Hardware Description Language (SV HDL).
SVHDL is selected because it provides extended (comparing
with Verilog and VHDL) possibilities for the structure
description and manipulating. SVHDL is used for the logic (unit
under development) and testbenches descriptions. Basic building
units are developed as reconfigurable units that help to simplify
further performance-area trade-off researches. To accelerate
experiments with different architectures some self-checking
testbenches have been developed. Such tests save a lot of
engineering efforts by simplifying and accelerating a procedure
of checking modified versions of the architectures under
investigation.

Regarding EDA, embedded synthesis tools of Quartusll
(ver.14.0) — Altera’s development tool, and Vivado (ver. 2014.2)
— Xilinx’s development tool have been used. Both QuartusIl and
Vivado include Place and Route and Timing Estimation tools as
well.
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As a simulation tool ModelSim Altera Started edition and
simulation tool embedded in Vivado have been used.

VII. CONCLUSION

A lot of research and design efforts are being done towards
hardware implementation of various firewall functions. The
common goal is to develop a hardware solution which is as
compact and efficient (in terms of performance, hardware cost,
power consumption) as possible.

Key features of the proposed firewall platform are hardware
re-configurability and extensibility. These features have been
achieved by using SOPC devices, expansion modules and
“soldering-by-demand” components. The platform can be used
for manufacturing a wide range of embedded solutions with
high security demands and for prototyping purposes in ASIC
development flow.

The proposed architectures and approaches can be used for
building very high performance solutions and cost optimized
systems, with low power consumptions as well.
Reconfigurable modules and self-checking testbenches
developed on System Verilog allow to reduce engineering

efforts during further architecture investigations and
optimization.
The further efforts towards building a hardware

implemented firewall include PPar unit architecture
development, analysis and optimization. A proof of concept
implementation of the firewall with presented architecture has
been successfully tested on a simple set of rules using standard
development board and under synthetic network load.
Thorough field-test experiments are planned for the future
work.
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