PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Compromising Windows 10 Phone Security System
with Standard API Calls

Alexander Ogolyuk, Tatiana Markina
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics
St. Petersburg, Russia
110136@niuitmo.ru (xms2007 @yandex.ru), markina@cs.ifmo.ru

Abstract—We investigate one of possible Windows 10
compromising technologies — using standard Windows API or
native calls for breaching security policies. We do the base
Windows 10 policy overview, describe possible threats based on
discovered vulnerability and suggest some possible solutions for
this problem.

1. INTRODUCTION

Modern mobile platforms evolve very fast. This is a result
of extreme concurrent fight between hardware and software
vendors in the mobile sector. Mobile vendors try to make their
devices to have a large number of functions, flexible, easy to
use and also don’t forget about security while designing all
this. But there are many reasons which deny to access all this
goals within one device (especially on newest devices and
platforms). Also we need to take in mind short development
period (because of concurrent solutions appearing every day).

In 2013-2015 Microsoft did renew their mobile platforms
(this is also true for their desktop platforms) with the launch of
Windows 8.1 and Windows 10. Such mobile platform is a big
step ahead because it is based on new common Windows
Operating System kernel (shared between Windows 8, 10, RT,
Windows Phone 8 and Windows Phone 10). Also common
development solutions are used both in writing applications,
Operating System internals and Windows security subsystem.
Unfortunately from security point of view, such approach was
not so good. Full integration of new desktop kernel into
mobile platform did request enormous development forces and
large research number within security field (finding new
vulnerabilities and potential threats for new system takes a
long period of time). Already today we can see some potential
flaws in Windows Phone 10 system, which will be most
possibly eliminated in the next system release.

One of such threats allowing to gain access from standard
user application to user‘s and even Operating System data by
breaking security model we will describe a bit later.

But let us start with remembering Windows Phone 8 (or
10) security subsystem base principles. Windows security
model is based on isolation principle and using minimal
privileges principle. Security model has four security levels.
Such levels are called “Security Chambers”. These chambers
are isolated containers where processes are created and
executed. Chamber is the security principal to which all rights
and permissions are granted. Windows explicitly grants
capabilities to special Chambers. Every Chamber level adds
barrier for application isolation. Every Chamber adds and uses

own security policy. Security policy defines which Operating
System abilities application can use and which can’t. Three of
these four levels have fixed security policy and the fourth has
dynamic security policy.

First level (Trusted Computing Base chamber) — uses only
kernel modules and drivers.

Second level (Elevated Rights Chamber — ERC) — allows
access to all system resources except changing security policy.
This (ERC) level is dedicated to system services and user level
drivers, which offer services to mobile applications (running in
user mode). Only Microsoft Company can develop
applications for this level (these applications have digital
signature, same as drivers and all modules from the first
level).

Third level (Standard Rights Chamber — SRC) is used for
built-in applications. Most of these applications work on third
level (SRC), like Microsoft Office applications and other
examples.

Fourth level (Least Privileged Chamber — LPC) is
dedicated to extern (installed) applications from Windows
Phone Marketplace (these applications we will discuss below).

Next we do is device access policies overview. First line of
defense — access to Windows Phone device and the
information it contains can be controlled via PIN or hard
passwords and associated password policies. When these
policies are configured, any Windows Phone that connects to
server must comply with policy.

Most of large companies world-wide currently use
Exchange Server. Microsoft focuses on this infrastructure for
the sake of simplicity in device management. Exchange Active
Sync is a time tested robust protocol that provides Windows
Phone with mailbox synchronization functionality. Windows
Phone ships with the Exchange Active Sync protocol and
supports Exchange Active Sync for synchronization of email,
task, calendar, contacts, etc. [2] with Exchange Server,
Microsoft Office 365 applications and other cloud based
solutions.

Because of the increasing number of Exchange Active
Sync implementations within devices, Microsoft introduced
EAS Logo certification program. All manufacturers must go
through Exchange Active Sync [3] implementation to show
the EAS logo. All Windows devices must meet the
requirement of the Exchange ActiveSync Program.

ISSN 2305-7254

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Exchange Active Sync offers ability to manage Windows
Phone via the use of security related policies which are
configured by security departments like Group Policies setting
for Windows. Exchange Active Sync [4] security
configuration policy can include:

e [PasswordRequired] requires to set a device locking

numeric pin-code or password before the phone starts
synchronizing calendar, task, email and other contact
information with an Exchange Server.
[ComplexPasswordRequired] requires the user to
define a complex (alphanumeric) device-locking
password.

[PasswordComplexity] can be used to specify the level
of password complexity.

[PasswordExpiration] sets the validity period of a
password, after which the password has to be renewed.
[PasswordHistory] prevents the user from re-using the
same password repeatedly.

[AllowSimplePassword] can be used to allow or
prevent the user from using a simple password or pin-
code.

[MinPasswordLength] sets the minimal number of
characters in the password.
[IdleTimeoutFrequencyType] defines the time before a
phone locks when not in use.

[DeviceWipeThreshold] defines the number of times a
wrong device PIN or password can be used before the
phone wipes (erases its data) and resets.

A new security concept is a so called “sandbox”. Every
Windows Phone application works on each own isolated level
(and uses limited functions number) which is defined while
installing the application. Base privileges list is granted to all
applications and allows access to isolated file storages. There
are no alternative information exchange channels between
applications except network ones (like Microsoft Cloud).
Applications are isolated from each other and can’t access
each other’s memory (which is common in all Microsoft
Operating Systems) or file objects (which is not common for
classic Windows Operating System [1]) including even input
(keyboard) messages. Also Windows Phone does not allow
applications to work in background mode which partially
hardens malicious software actions. When user switches to
new Windows Phone application, previous application goes to
“sleep” mode. This approach guarantees that application will
not take critical system resources or send data to network
while user does not work with this application. There are
exceptions for this rule for system wide and built in
applications and services designed by Microsoft itself. These
services mostly are designed to perform common tasks on
behalf of applications. One of such services is Background
Transfer Service (BTS) which makes possible (for extern
applications) to use HTTP transfers using Windows low level
implemented (and fully optimized) functions. Also services
include Alarms APIs (for reminders and similar scenarios),
background Audio Agent, Scheduler (which can be our point
of interest for performing forbidden calls on schedule basis
and using Windows System account credentials) and Location
tracking.

573

Microsoft declares that the base development platform for
Windows Phone applications is Microsoft dot NET
(framework). This platform offers managed API sets and does
not allow any low level access to base and kernel Windows
APIs. So applications (developed outside of Microsoft
Company) can’t access system registry (we shall decline this a
bit later) which prevents data leakage threats and critical
Operating System objects possible damage. Also system file
objects access is denied to all applications. Le. developers
can’t use low level API (including Win32) to access Windows
system objects. Bypassing this restriction (by using default
Operating System functions) will be described a bit later.

This security model was introduced in previous Windows
Phone systems (6 and 7) and is still actual for Windows Phone
8 and 10.

1L BREAKING THROUGH SECURITY

RESTRICTIONS

The new feature of Windows Phone 10 is an offer of native
components usage (i.e. components compiled into target
Central Processing Unit code, which in our case of Windows
Phone are ARM code instructions) written in classic C++. This
offer includes only applications which use DirectX subsystem
and additional dynamic libraries. It seems was introduced to
allow applications performance breakthrough (because of
intermediate levels absence and virtualization which are a
common case for managed code written in C Sharp, Visual
Basic or Java give much higher working speed). In the same
time writing “classic” applications (and all applications which
use graphical user interface) is still allowed only while using
managed code and XAML. From other side nobody denies to
use own additional native libraries inside your application (in a
sake of high performance calculations like large dimension
picture processing or game rendering).

To use our own native library we need just write (using
Microsoft Visual Studio and Windows Phone Software
Development Kit) a managed based C Sharp application and
set a reference to other native application (like dynamic link
library written in C++).

The Dynamic Link Library executable is the special form
of executable file. The Dynamic Link Library describes a fact
that all functions are linked while loading. There is another
option — the static library which contains native code which is
combined with other native code into a single executable.
Those who don’t use C/C++ (or other language compiled to
native code) and assembler code can have some difficulty
while learning concepts of static and dynamic libraries and
static and dynamic linking. The brief difference is that when
some statically linked code changes — all executable using this
code require to be updated. The most of the Windows API
functions are located in native Windows Dynamic Link
Libraries. So it is easy to imagine how hard it could be to
change code if every Windows application needs to be updated
on every change or Windows new fix.

While writing our own native library we need to define
dynamic library interface in the header files:

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Algorithm 1

#pragma once
namespace TestFs

{
public ref class TestF sealed
{
public:
int
TestF::Test(Windows::Storage::Streams:: IBuffer”
buffer);
}s
}

Now we can easily use methods implemented in our
sample library (which is compiled into native code from C++)
from our managed code based application (written in C Sharp)
and we also can put there and back our data with use of
intermediate buffer like this:

Algorithm 2

namespace FilterTest
{
public partial class
MainPage : PhoneApplicationPage
{
public MainPage()
{

InitializeComponent();

}
TestF fltr = new TestF ();

private async void Go
(object sender, RoutedEventArgs e)

{
byte[] bytes = new byte[1000];

if (0 !=fltr.Test(bytes.AsBuffer()))

string str2
500);
MessageBox.Show(s#2,"This is
information", MessageBoxButton.OK);

}
}
}

Encoding.Unicode.GetString(bytes, 0,

TEST dbg

Inside the library buffer data access can be implemented
same as in following code:

Algorithm 3

#include <robuffer.h>

#include <ppltasks.h>

using namespace FFltrs;

using namespace Platform;

using namespace Windows::Storage::Streams;
using namespace concurrency;

574

int GFltrr:: Test(IBuffer™ buffer)

if (buffer == nullptr) return 0;

IUnknown* pUnk
reinterpret_cast<IUnknown*>(buffer);

IBufferByteAccess* pAccess = NULL,;

byte* bytes =NULL,;

HRESULT Ar = pUnk->Querylnterface(_ uuidof
(IBufferByteAccess), (void **)&pAccess);

if (SUCCEEDED(4r))

{
hr = pAccess->Buffer(&bytes);
if (SUCCEEDED(4r))

auto length = buffer->Length;
// working with data buffer
return 1;
}else return 0;
}else return 0;

}

Such mix of different technologies is our point of interest
while searching for possible vulnerabilities and bypassing
security system restriction methods.

So we can (this will be demonstrated a bit later) use native
components for unauthorized access to forbidden Windows
APIs like ntdll.dll, Win32, etc. which are present in system
kernel [5] (we remember that new kernel is shared between
mobile and desktop Windows versions).

In real life application these forbidden API calls are not
controlled by Windows security subsystem.

Initially Windows mobile developer tools do not include
the possibility to use most of Win32 APIs and other low level
interfaces. These restrictions are implemented via header files
system where function prototypes are not present (in desktop
Windows versions all these prototypes are available) and
appropriate link libraries absence.

But remembering that mobile Operating System shares
kernel with desktop versions (which are reverse engineered for
many years) we can easily implement all our development and
hacking experience on this newest Windows Phone platform.

To use undefined interfaces (Win32 APIs and other low
level ones) we need just to define needed function prototypes
(these prototypes are identical to desktop ones and simply can
be copied from standard desktop header files) in own header
files, then load needed dynamic library which exports target
functions and simply call our target function.

Dynamic libraries which we need to load are well known.
There are several differences (in functions list, etc.) comparing
to desktop Windows versions, but we can experiment with
libraries inside /System32/ folder of mobile Operating System

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

with use of standard dependencies resolving tools. Common
Windows Runtime API exported in these Dynamic Link
Libraries consists of the following groups:

Networking
e Proximity

Storage

DataSaver/Connection Manager
Location

Touch

Online Identity

Keyboard

Launchers & Choosers

In-App Purchase

Sensors

Threading

Base Types/ Windows.Foundation

If talking about other APIs (dedicated to managed code
compiled applications and languages) in Windows Phone 10
dot NET Compact Framework was replaced by Core CLR.
Core CLR is completely the same as dot NET which was used
in previous Windows versions. Core CLR was introduced for
higher stability and high application performance taking
advantage of multi processing and improvements of battery
life. As we know all new phones have today multi cores, so
applications and Operating System are going to work faster
because of this. We are mostly interested in Base Types APIs
located in Kernel32 Dynamic Link Library and don’t care of
other types like Core CLR for now.

Shared kernel and fully functional emulator of Windows
Phone (which is deployed with Windows Phone Software
Development Kit and serves as a debugger tool for mobile
applications) will help us to find all needed components and
libraries. Windows Phone Emulator is the desktop application
that emulates a Windows Phone device. It provides a
virtualized environment in which application can be tested and
debugged without a need of physical device. Emulator also
provides an isolated environment for applications.

For example to research mobile file system of Windows
Phone we need to connect emulator’s virtual hard drive to
desktop Windows via standard disk manager. We need to take
in mind that data in isolated storage persists while the
emulator is running, but is lost once the emulator closes.

Also big help is that all executable files inside emulator
(including our own debug application) are compiled into x86
(32bit) code and can be reverse engineered (with use of
disassemblers and other reverse tools known for many years
on Windows x86 desktop platform). Later our application is
compiled to target CPU instructions (mostly ARM based) and
works completely the same as our debug application
(compiled into x86 code).

From the security expert point of view all this brings big
danger for newest Windows Phone platform because of wide
possibilities to use all previous Windows desktop experience

575

for finding vulnerabilities and bypassing security subsystem
restrictions on new Windows mobile platform.

Returning back to calling forbidden functions we need to
bypass only one more barrier while developing own
application. This barrier consists of fact that dynamic loading
functions themselves (LoadLibraryW and GetProcAddress)
are not available in our native library because development
tools (Visual Studio and Windows Phone Software
Development Kit) block their usage inside of any application
including our one.

To bypass this barrier we can reuse and old trick known in
desktop Windows. GetProcAddress can be replaced by
searching function address within executable image loaded in
memory using navigation in perfectly known Portable
Executable file structure (format specification) which is
completely identical in both desktop and mobile Windows
Operating System.

While booting our application Windows Phone already did
load all needed system modules and dynamic libraries
(without these libraries application can’t work because
Windows Mobile uses them also internally).

So we just need to find Portable Executable header in
memory and then find export functions table. Our
implementation of forbidden GetProcAddress can look like
this:

Algorithm 4

void *PGetProcAddressA(void * Base, LPCSTR Name)
{

DWORD Tmp;

IMAGE _NT HEADERS *NT = ImageNtHeader(Base);

IMAGE_EXPORT DIRECTORY *Exp
(IMAGE_EXPORT_ DIRECTORY *)ImageDirectoryEntryT
oDataEx(Base,TRUE,
IMAGE_DIRECTORY_ENTRY_EXPORT, &Tmp, 0);

if(Exp==0 || Exp->NumberOfFunctions==0)

SetLastError (ERROR_NOT_FOUND);
return 0;

}

DWORD *Names = (DWORD*)(Exp->AddressOfNames +
(DWORD_PTR)Base);

WORD *Ordinals (WORD*)(Exp-
>AddressOfNameOrdinals + (DWORD_PTR) Base);

DWORD * Functions (DWORD*)(Exp-
>AddressOfFunctions + (DWORD_PTR) Base);

FARPROC Ret = 0;
ifl (DWORD_PTR)Name < 65536)

{
if(DWORD_PTR)Name-Exp->Base<Exp-

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

>NumberOfFunctions)

Ret = (FARPROC)(Functions[(DWORD_PTR) Name-Exp-
>Base] + (DWORD_PTR)Base);
}
else
{

for(DWORD i=0; i<Exp->NumberOfNames && Ret == 0;
i++)

char * Func=(char*)(Names[i|+(DWORD_PTR)Base);

iflt Func && stremp(Func,Name) 0) Ret
(FARPROC)(Functions[Ordinals[i]|[+(DWORD_PTR)Base);
)

)

if(Ret)

{

DWORD ExpStart = NT->OptionalHeader.DataDirectory
[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddres
s+ (DWORD)Base;

DWORD ExpSize = WNT->OptionalHeader.DataDirectory
[IMAGE_DIRECTORY_ENTRY_EXPORT].Size;
&&

if(DWORD)Ret>=ExpStart <=

ExpStart+ExpSize) return 0;

(DWORD)Ret

return Ret;

}
return 0;

}

To find module image base (of Windows dynamic library)
we can again use an old trick of searching mask in memory by
known (from Microsoft DOS times) signature of executable
file start. I.e. we need to get some address of known and
allowed system call. In our example we can take standard
function called “GetSystemTime”. This system call is allowed
(for our C++ based library) and is situated in needed system
module (kernel32.dll).

This is how we can get kernel32.dll image base:

Algorithm 5

char *p = (char*) GetSystemTime;
p = (char*)((~0xFFF)&(DWORD_PTR)p);

while(Tmp)
{
_try
{
if(p[1] =2 && p[0] ="M
break;
}

__except(EXCEPTION _EXECUTE_HANDLER)
{;}

}

p = 0x1000;

576

Now we can call all functions situated in kernel32.dll in
such way:

Algorithm 6

CreateFileA
"CreateFileA");

(CFA*)PeGetProcAddressA(p,

WriteFileA
(WFA*)PeGetProcAddressA(p,"WriteFile");

HANDLE # = CreateFileW(L"our_long_file name.txt",
GENERIC READ, 0, NULL, OPEN_EXISTING,
FILE_ATTRIBUTE NORMAL, NULL);

Also we can call more than just kernel32 functions which
are mostly enough to access confidential data. Now we can
load additional libraries and use all available sets of Win32
APIs and other previously forbidden API functions. For this
we need to access LoadLibrary function call:

Algorithm 7

LoadLibraryExW = (LLW*) PeGetProcAddressA (p,
"LoadLibraryExW");

And load all needed modules like those which work with
registry (which is officially forbidden by Windows Phone
Operating System like we did discuss above).

Algorithm 8
static HMODULE AMod =0;

hMod LoadLibraryExW (" API-MS-WIN-CORE-
REGISTRY-LI-1-0.DLL", NULL, 0);

RegOpenKeyFExA = (ROA*) PeGetProcAddressA (hMod,
"RegOpenKeyExA");

RegQueryValueExA (RQVA*)
PeGetProcAddressA(AMod, "RegQueryValueExA");

In such way by use of forbidden system calls we can get
access to confidential data on disk (built-in SD card and extern
memory cards), in registry or in other places. We can even
access standard network APIs (like Winsock API or native
implementation variant from ntdll Dynamic Link Library). All
this information can be transferred (with data buffer described
above) from our native library to our managed application and
back. Also we can transfer confidential data via network
bypassing all Windows Mobile security principles and
discarding user’s data confidential system.

This is an example of reading system file objects and
registry:

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Algorithm 9

HANDLE h CreateFileA (L
"c:\\Wwin\\system32\\license.doc", GENERIC READ, 0,
NULL, 0, FILE_ATTRIBUTE NORMAL, NULL);

LONG res =0;
HKEY /Key;

if ((res
(HKEY LOCAL_MACHINE,
L"Software\\Microsoft\\Skype\IMEA", 0, KEY READ,
&hKey)) '= ERROR SUCCESS)

return ERROR;

RegOpenKeyExA

DWORD dwsz = size*sizeoff WCHAR);

dwsz = size*sizeoff WCHAR);
RegQueryValueExA(hKey, L"", 0, 0, (LPBYTE)wstr,
&dwsz);

We assume that even more dangerous attacks are possible
in real life. By default mobile application is secured with
standard Windows access control list and policies (NTFS
permissions for file objects, ACLs for registry keys, etc.). Le.
such application can’t destroy critical data and system objects
in Windows Phone 10. But theoretically we can use same old
tricks from desktop Windows to escalate application privileges
and go to higher security levels (like obtaining System account
context) of system services where we can completely destroy
user and system data. So found vulnerability and its
exploitation method can be marked critical and their effects
need to be carefully researched forward.

We plan to continue research in this direction and plan to
elaborate different methods to solve this problem (while
waiting for vendor solutions and conceptual approaches which
can help to eliminate this found vulnerability and all the
similar ones in the near future).

Some experts can say that such applications (using
restricted APIs) can be disqualified while Windows Phone
Market revue, because every application goes through
moderation and it is impossible to install application out of
Market (except using unblocked developer phone or device).
But this additional protection (through moderation of
application) is too weak because can be simply bypassed by
hiding APIs usage (like XORing string names, etc.) and in
export table of application (which is the main subject of
moderator review) only allowed functions (like
GetSystemTime) are present.

I11. CONCLUSION: ROADMAP FOR POSSIBLE

PROBLEM SOLUTIONS

We need to say that similar compromising approaches can
be exploited on every Windows 10 (on x86 it is not so useful
cause all APIs are allowed there, but on Windows tablets it
could be very useful because of similar registry, file and
system objects restrictions which are even harder than those
present in Windows Phone Operating System).

577

Also we suggest (this suggestion is targeting especially
Microsoft developers and Market moderators) to use
dynamical and static (i.e. disassembling) analysis while
researching application before approving it. Sure this will take
much more enforcements from application reviewer, also
involving the need of high-class qualification, but this seems
an only good way to prevent malicious applications from
going to Microsoft Market. Also we could suggest using some
approaches known in Apple AppStore (like extended reviews
and digital signatures for executable modules).

From other way forbidden APIs usage in any application
can be delayed in time eliminating dynamical monitoring
effectiveness (i.e. malicious functions will not be active during
review time).

Counter measures against such malicious approaches need
to be designed in near future. The possible direction of such
counter measures is a new generation of security mechanisms
development (like Intrusion Prevention Systems). This
approach can use similar ways as classical network oriented
Intrusion Prevention Systems [5].

Signature based method of searching malicious code can’t
be implemented in such systems for sure (cause we already
have a big industry exploring this field called Antivirus
Systems, which are by chance not represented yet on Windows
Phone platform, except the planned Microsoft Defender
system). But other classical Intrusion Prevention Systems
approach can be still used. We are talking about activity
monitoring (in case of our suggestion we mean malicious code
activity).

Such activity monitoring can find uncommon actions of
malicious application and then put it under heavy monitoring
and logging (even including human resources for additional
analysis of such code) together with waiting for later decision
about application status (malicious or not).

Also interesting point could be the use of self-learning
Intrusion Prevention Systems (detecting malicious code) based
on Neural Networks. Other possible scenario for solving this
problem is to implement similar scenario as which is
nowadays used by some Antivirus companies. Such scenario is
based on building a distributed voting system where each user
(in our case mobile user) can vote if application has malicious
functions or not. A big number of such votes on malicious
application can start the deep inspection of the application in
Microsoft Market. From other side this approach is not too
effective also cause big number of false alarms can be
generated by users which are not experts in security field and
can misunderstand application behavior or just vote negative
because of security unrelated reasons, such as application price
or usage policies.

Sure all these approaches are very resource taking
(including heavy usage of mobile device resources leading to
faster accumulator degradation). But finding compromise
between security functions number and resource usage we
assume that it is possible to set a good barrier for such security
breaks and prevent system threats like discussed above.

We plan also research on these approaches in future works.

(1
(2]
B3]

REFERENCES

M. Russinovich, D. Solomon, «Windows Internals, 6th edition».
St.Petersburg: Piter, 2014.

TechNet Library, Understanding Information Rights Management,
Web: http://technet. microsoft.com/en-us/library/dd351035.aspx
TechNet Library, How IRM works in Office and Exchange Server,

Web: http://technet. microsoft.com/en-us/library/cc179103
.aspx

578

[4]

[5]

[6]

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

TechNet Library, Understanding IRM with Exchange ActiveSync,
Web: http://technet.microsoft.com/en-us/library/ff657743
.aspx

Windows Phone security, «48 Windows Phone apps using native
code — Nanapho», Web: http://nanapho.jp/archives/2012/02/only-48-
windows-phone-apps-using-native-code/

M. Becher, F.C. Freiling, J. Hoffman. Mobile Security Catching up?
IEEE Symposium on Security and Privacy, SP’11,
2011.

