PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

Design of Service-Oriented Architecture Pattern for
Multi-Device and Multi-Platform User Interfaces

Roman Arefev, Tatiana Zudilova

Saint-Petersburg National Research University of
Information Technologies, Mechanics & Optics
St.-Petersburg, Russia,

{arefev, zudilova} @ifmo.spb.ru

Abstract—The paper presents a conceptual Service-Oriented
Architecture (SOA) pattern for development of multi-platform
and Multi-device User Interfaces (SOA-MUI). This study
provides relevant objectives: analyzing the existing patterns for
developing SOA-MUI pattern; extending the basic SOA patterns
for implementing these interfaces; applying and validating the
proposed extended SOA-MUL The research was done as a step in
extending and adapting the principles of SOA while combining
the patterns-oriented design and model-driven engineering
approaches.

I. INTRODUCTION

Developing an interactive system and especially User
Interfaces (UI) is difficult due to the complexity and the
diversity of existing environments and to the amount of skills
required. Uls account for more than 50% of the total
application costs and development time. In this context,
Multiple User Interface (MUI) is among these myriad of
innovative Ul

The MUI concept provides multi-views of the same
information and coordinates the services available to end-users
from different computing platforms [1]. A computing platform
is defined as a combination of a hardware device, computing
networks, an operating system, and software development
toolkits that define the look and feel of the Ul. An MUI
generally provides support to different types of look and feel. It
offers different interaction styles, and takes into account the
constraints of each computing platform from which the service
is accessible while maintaining cross-platform and multi-
devices consistency.

There are many research papers in the field of design
application using the SOA approach implementation. However,
in these works there is not enough description of
implementation issues such as how SOA programming model
can be used for the development of human-facing services.

The outcomes of this research' are development and
validation of a SOA pattern supported by services with a
multiple distributed UI that are secure, yet usable and
accessible. The pattern is human-centric meaning an explicit
incorporation of wuser experiences into the design and
engineering loop.

Developing such interactive systems with a MUTI is rather
complicated because of the complexity and the diversity of

Ahmed Seffah
Lappeenranta University of Technology

Lappeenranta, Finland
ahmed.seffah@lut.fi

existing environments and to the amount of skills required. The
difficulties emerge when the same Ul is to be developed for:

e Multiple contexts of use mean different user
preferences, categories of users, tasks, locations, and
working environments.

o Different devices and operation systems.

The problem addressed in research is the large amount of
combinations for possible application implementations on
different types of devices with the various operating systems
(OS) for example, Windows, Linux, and Android. It should
require an innumerous quantity of developers to implement and
validate all these possibilities. The high level goal of this work
is the attempt of reducing the total application costs and
development time as we can not really diminish the possible
number of combinations. The novelty is in solution of this
problem by the new approach to design of visualizing layer of
distributed application, where we applied the new SOA pattern,
we proposed for composing the UI services. It allows
delivering the correct UI, regardless of OS or type of device.

The paper contains six sections. The next section describes
the review of methods and motivation example. Section three
includes the analysis of present approaches to implementation
of MUI. Section four contains the description of the proposed
SOA pattern with explanation of application into the
motivating example. In Section five the implementation and
used technologies are shown. Discussion and conclusion are in
the last Section.

II. BACKGROUND

A. Methodology
We adopted a model-driven approach to modeling with four
steps:

1) Analyzing the present approaches to developing multi-
platform and multi-devices applications.

2) Specifying architecture models of multi-devices and
multi-platform UI pattern.

3) Using SOA design principles for re-architecting multi-
platform and multi-devices Ul in the form of a set of
interrelated services.

4) Applying and validating SOA-MUI model using a

ISSN 2305-7254

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

specific application that can be accessed via different
multi-platform devices, for instance, interactive tables,
tablets, etc.

The design research approach was used as methodology for
building and validating the SOA-MUI. A multi-methodological
and iterative approach to information system design research
includes three actions [2]:

1) Observation. We have done it by review of a pool of
applications from industry. We sorted out of the
practices of developing applications that adapt MUI
and inspected the technical specifications of existing
frameworks for Human-Computer Interaction (HCI)
design. The results can be found in Section three.

2) Experimentation. In this stage different design
blueprints of SOA-MUI patterns were developed using
the Service System Modeling Notation (SSMN) that we
developed as a graphical notation (discussed in Section

four).

3) System development. It consists of five sub-stages:
concept design, constructing the architecture of the
system, prototyping, product development, and
technology transfer. This is a critical activity in the
design research process and we developed a SOA
pattern for multi-devices UI to support the
communication in these five stages. The outcomes are

in Sections four and five.

B. Motivating example: “Tires recycling” service

As a case study, we developed a web-service that notifies
user (car owners) about the right time to change tires. Every car
owner in northern countries needs to change tires for winter
seasons. The wear of studs of winter tires can lead to traffic
incident. It is important to know the age and condition of the
tires, and to make time reservation for the garage visits. It is
also necessary to give used tires for recycling to decrease
environmental pollution. The demonstrated at Fig. 1 service-
oriented system is aimed to assist checking the time for
changing the tires and getting the notification about time to
change, coordinating the schedule of garage and other places
where you can leave the tires for recycling. It also helps to
identify involving government and commercial services and
regulators.

III. EXISTING DEVELOPMENT APPROACHES TO MUIS

This section describes the approaches which illustrate the
practices of developing applications that adapt to multi-
platform devices’ constraints and capabilities. The most used
and/or promising are presumed the Responsive Web Design
(RWD), progressive enhancement based on browser-, device-,
or feature-detection, markup language-based approaches, and
service-oriented approach to UI (SOA-UI).

A. Responsive Web Design

The main idea of RWD is the adaptation of the layout to
the screening environment. It uses fluid, proportion-based
grids, flexible images, and CSS3 media queries in the
following ways [3]. The fluid grid concept calls for page
element sizing to be in relative units like percentages, rather

422

Car dealers
and vendors

Weather and
environment
services

Tire
recycling
centre

Changing of
tires (date,
time, place)

Transport
governmenta
1 agency

Garages for
changing
tires

Police and
traffic
departments

Fig. 1. The main services, which can be accessible via different devices
by case study distributed system

than absolute units like pixels or points. Flexible images are
also sized in relative units, so as to prevent them from
displaying outside their containing element [4]. Media queries
allow the page to use different CSS style rules based on
characteristics of the device the site is being displayed on,
most commonly the width of the browser. The Flexbox Layout
(Flexible Box) module (currently a W3C Candidate
Recommendation) is another technology of this approach and
it is used for providing a more efficient way to lay out, align
and distribute space among items in a container, especially
when their size is unknown and/or dynamic.

B. JavaScript detection

Another way to get Ul which can adapt to the device
consists of the JavaScript facility. Browser ("user agent")
detection (also called "browser sniffing"), and mobile device
detection are two ways of determining if certain HTML and
CSS features are supported (as a basis for progressive
enhancement). However, these methods are not completely
reliable unless used in conjunction with a device capabilities
database. For a more precise detection of mobile phone and
PC features, there are special JavaScript frameworks like
Modernizer, ResponselS, and jQuery Mobile that can directly
test browser support for HTML/CSS features.

C. Markup languages

It divides Ul markup from application code. In general,
User Interface Markup Language (UIML) is a concept in
which the data path from the application to the physical
display device passes through the abstract field of logic,
interface and presentation [5]. The interface area includes a
description of the structure, style, content and behavior of the
elements. The aim of UIML is to effectively implement the
interface area. UIML defines constituent elements of UI,
modality of UI elements (visual, verbal, tactile), content which
is used in the UI (text, images, sounds, etc.), reaction of the
elements of UI to the user, control of events of UI (Java Swing

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

classes or tags HTML), external Application Programming
Interface (API) for interaction with UI [6]. User Interface
eXtensible Markup Language (UsiXML) is an another XML~
compliant markup language that explains the UI for multiple
contexts of application such as Character User Interfaces,
Auditory User Interfaces, Graphical User Interfaces, and
Multimodal User Interfaces. UsiXML describes Ul elements
as widgets, containers, controls, buttons, and menus in an
abstract way without mentioning the technology it could be
implemented with. This makes possible the cross-toolkit
development.

D. SOA UI

SOA approach makes easier, faster and less expensive than
before to deliver essential information to users. Instead the
development of new applications, for instance, when a
company enters a new line of business or must tackle with
new issues, SOA operates with services (such as the Ul or the
logic to operate business process) available to users across the
network. There is an approach for using SOA not only for
providing data but also as provider of visualizing service for
this data, which can be obtained from different services. When
new business objectives emerge, SOA helps quickly and easily
to create new composite applications.

The SOA for UI approach can also be described by Web
Services for Remote Portlets (WSRP) specification. It defines
a common, well-defined interface to interact with plug-
oriented representation of web-services [7]. They are engaged
in interactions with users and provide code snippets of Ul
markup language.

These web-services provide transparent access to content
and applications, regardless of their location, and during
development suggest a simple visual assembly. This is
achieved by unifying the specifications of applications,
interface and navigation elements. The WSRP interface
descriptions are based on multiple standards - Web Services
Description Language and Simple Object Access Protocol.
Developed on the basis of WSRP 1.0 web-services can operate
on a variety of platforms, including Java/J2EE and
Microsoft NET.

E. Summary

Each of the presented above approaches has advantages
and weaknesses. RWD can be implemented with a small
amount of code, but it is browser dependent and supporting all
possible devices could result in a lot of code. The same is true
for progressive enhancement since the devices need to be
defined in additional JavaScript files. The advantage of this
approach is the almost full control over OS and browser
definition. Markup language based approach implies the use of
middleware and it cannot be applied all types of devices. SOA
approach to Ul combines the strengths of markup languages
approach with an appliance to SOA principals of loose
coupling, autonomy, and composability. It eliminates the
weaknesses of RWD and progressive enhancement.

IV. MODELING OF SOA BASED MUI

After the examination of existing approaches to cross-

platform Uls we concluded to emphasize on SOA-UIL. We are
inspired to demonstrate the way to create the distributed
system which can produce messages and manage data using a
variety of devices and OS. We used already existed technique
of visualizing and combine it with developed system design
which helped to produce these universal messages.

A. New SOA pattern for monitoring and dynamic design of Ul
services

The idea of our study is to present the pattern which uses the
ability of SOA for composition of existed services for new
services. We applied the known SOA patterns as “Service
configuration” by Jain and Schmidt [8] and “Capability
composition” by Thomas Erl [9] to produce the complete SOA
application which has many versions of UI. At Fig. 2 you can
see the difference of designed system compared with

traditional SOA.
Sequence of Services| Mfe”,'f,?g'gg

Atom\c Ul services for
different devices and OS

O Q o
/ Reconfiguration

engine on
demand

Fig. 2. Pattern for monitoring and dynamic design of UI services

For “Reconfiguration engine on demand” we used the
“Service configuration” pattern to switch between different
versions of the SOA-UIL The pattern of “Capability
composition” aimed to solve a problem that requires logic
outside of proposed service boundary.

Fig. 3 shows possible components of a SOA application in
relation with our case study detailed in Fig. 1. It depicts the
use of the notation we proposed, the service system modeling
notation. Basically this notation combines UML (Unified
Modeling Notation) and BPMN (Business Process Modeling
Notation) to create an advanced notation that helps developers
of service systems to specify the structure and behavior of the
service systems. It includes the combination of the services or
patterns and their relations with the business process. In the

presented “tire recycling” application it can be used with
different devices, platforms or forms of UI, for
instance:

o Tablet device with Android or Apple iOS. As a style of
interaction, we may use direct touch screen capacity or
stylus.

e Desktop PC. The Ul for this device comprises a
keypad, mouse and screen.

o Mobile phone devices like Samsung Galaxy or Apple
iPhone under the different OS and with different
interaction modality such voice, stylus, and touch
screen.

As mentioned earlier, one of the long-term outcomes of
our research is the SSMN. As a part of this, we propose three

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

types of plain services based on their functions. The first type
is a “Source of data service”. The second type is the services
for manipulation or transformation of data (business logic
service). And the third type is the services for visualizing and
interacting with data (“Service for visualizing”).

& carowner

[#% Application data to /_b 2 Jadictsualizng \
/ template 1
L] Phone, visualizing

B / >v% PC visualizing]
A

@

@
Reconfiguration
&

&
@ //M

Fresentation
layer
services

l @ran&ﬁ:rmmg the data

Services

Add and change. layer

(=
characterisiics

Components and operational
systems layer

Legend:

&) %
“ gSeodce rol rIdata Service for visualizing

Fig. 3. SOA-based view of distributed application for serving the tires
recycling

B. Case study description

The following are the description of main services and
message flows that form the proposed case study web-
application. The group of “Services for data manipulation” of
the proposed application “Tires recycling” according to SSMN
is aimed to “Get info about time to change tires in details”,
manipulating the data of users, monitoring and management of
“Services for visualizing” sequence. It collects the info about
cars and tires of customers.

The “Services for data manipulation” request “Open Data
Weather forecast” source daily about the temperature and
checks the calendar (1 December and 1 April) to notify the
customer about time when it is better to change tires
additionally to checking the age of tires. As an additional
option, the “Back-end Service” can request the “Service of
Tires’ Shop and Garage” to check the characteristics of tires
and assist customers to coordinate the right time to change
tires. The request to Service of “Tires recyclers” helps to know
the place, time and other necessary conditions to leave the
used tires for recycling. The request from “Tires recyclers” to
the Service of “Tires’ shop and garage data” can help to
understand the characteristics of tires, the amount of sold tires
and their types for balancing marketing and
manufacturing.

In our system we had to apply eight principles of
SOA [10]:

424

1) Services are reusable. Described services can be reused
by any user who provides necessary information.
Additionally any other service which provides
mentioned information can reuse the tires recycling
service.

2) Services share a formal contract. The developed
service needs exact information to work properly. E-
mail to send notifications, current tire type and date of

their installation on the car.

3) Services are loosely coupled. All services that are used
in the presented service are loosely coupled because we
do not need to know any details about their

implementation.

4) Services abstract underlying logic. Tires recycling
service hides the underlying logic. There is no need to
know how it works to get results. User just has to

provide necessary information.

5) Services are composable. Our service reuses other
services. Among them there are temperature service

and service which provides schedule and price.

6) Services are autonomous. This service has everything
that is needed to calculate the best time for changing
tires provided that it has received all necessary

information according to the contract.

7) Services are stateless. Each query to the service is
separate from each other. There is no need to keep

track on state information.

8) Services are discoverable. The implemented service
can be included in all related repositories and can be

found easily if necessary.

C. SOMA as a Development Methodology

According to the third stage of design science research
approach we have to provide the architecture view of the
proposed system. The SOA modeling includes also
techniques, which are required for deployment, monitoring,
management, and governance to complete SOA life cycle.
During the modeling of SOA, it is necessary to decide about
architecture of each SOA layer. SOA patterns help to choose
the best decision. According to principles of SOA layers’
model we have chosen for case study the software
development method of Service-Oriented Modeling and
Architecture (SOMA) [11]. It helped us to use the holistic
approach to design. We follow SOMA stages for the design of
our case study application. The first step is service
identification, where the processes were described according
to business Process Model. Through the following steps of
service classification and categorization, subsystem analysis,
component specification, and service allocation the SOA
model was developed for the case study application. The last
step of SOMA is implementation of services. It was made with
the help of design patterns for capability composition, service
layers, and brokered authentication.

The designed “Tires recycling” service is too large to be

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

implemented within one single service. It was divided into
several: the weather request functionality, recycling
production and dealer information, requested from the batch
process, part for communication with user and services for
monitoring the combinations of services. The Ul past affects
easily to the mentioned above services according to
application logic and User eXperience (UX) without any
major changes in other parts of the entire service ecosystem.
Employing this pattern can help to achieve the loose-coupling,
reusability, and composability principles.

After the decomposition, it was clear that some of our
separate services have functional commonality and can be
sorted in layers instead of leaving them in one unordered pile
which could decrease overall understandability of the service
ecosystem architecture. This approach increased the
reusability of each service because it was easier to find which
service fits better for our needs within preliminary dedicated
layers and thus there are fewer chances that in case of
ecosystem growth any redundancy will appear.

V. IMPLEMETATION PHASE

A. The development environment

According to chosen research approach we have to
prototype SOA application, which shows the implementation
of SOA-MUL. In previous section we elicited the architectural
principles and now we address the main technologies of
implementation.

There are two main parts of our motivation example
application in our study which we want to emphasize
especially. The first is the group of “Services for data
manipulation”. These services are not visible to customers and
there are no direct Ul for them. The “monitoring agent” and
“reconfiguration engine on demand” services are included into
this group. They manage “The services of visualizing” and
produce messages. This notification can be seen by
subscribers on their devices using multi-platform
environments and UL It is implemented with appliance of
Enterprise Service Bus (ESB) technology using the Integrated
Development Environment — Anypoint Studio [12]. It is a
well-known technology of rapid development. It allows using
the power of Java EE and Spring framework.

P remo—
Step 3.1
Add new
& Step 1 Step 2 (Step 32 §i Stepd
User Login View listof tires Edit record Logout
[+ \ J
\r—\
\ Step 3.3
Delete record
—

Fig. 4. Sequence data management steps

The second service, which can be detailed, is for managing
customers’ data regarding the tires in “Storage service”. It is
based on the Node.js technology for server side and presents
API for saving data according to SOA patterns. As a front-end
for data input we used rendered HTML page developed

425

according to Model-View—Controller pattern [13] with
JavaScript Ajax asynchronous technology [14] with appliance
of JQuery library. We use Nodejs as a fast and modern
technology that simplifies prototyping and has a wide
community with a large variety of add-ons. These instruments
let to provide the development of scalable and robust
applications. One of the additional libraries for brokered
authentication via OAuth2 was added to case study
application. It uses the authentication service of Facebook
according to patterns of HCI. Node.js helped us to implement
“Services for visualizing” in a modern way. “Reconfiguration
engine on demand” used the approach of React which allowed
hot compiling modules depending on request.

B. Data flows and scenarios

The sequence of steps for application data management is
presented at Fig. 4. Each of the presented steps implies action
with data. It grounds the logic for UI of data management. The
data is used in “Back-end service”. This service executes the
core function of the application. It sets the type of notifications
which should be sent based on the incoming information. In
our application we made four types of notification and each
record should be checked on conditions, which they are
connected with. This service is implemented in Java and the
Mule ESB technology was used for message flow processing.

Table I identifies scenarios for illustrating the main
functions of the application and proves the correct choice of
case study topic and necessity of MUI approach in it. Fig. 5
portrays the screenshot of Desktop view and Fig. 6 - Mobile
Phone view. Here you can see different views for different
types of devices, which are generated according to offered
SOA-MUI pattern. Fig. 5 shows the interface for Desktop with
large screen and keyboard input, but Fig. 6 depicts interface
which was developed for small screen with touch input. This
interfaces have been switched during the work of “monitoring
agent” and “reconfiguration engine on demand”, described in
Section four, to change the sequence of visualizing services
according to different types of devices with different operating
systems (OS).

Here you can add your tires to our back-server for monitoring.

.
[EET .

Special offers

201 bhigh durabi

®

PROFESSIONAL FRIENDEY

Fig. 5. Desktop view

C. Extension and improvements of research

This research can be aligned with Model-driven
architecture (MDA) [15]. MDA suggests transforming one
Platform-independent model into several Platform-specific
models (PSM), one for each platform or technology where the
Ul as a service will be operated.

Sign in Tires Service

Login

Fig.6. Mobile phone view

MDA also provides support for automatic code generation that
implements PSM for those platforms.The SOA-MUI
framework paves the direction for modeling Ul and user
interaction as a part of integrated application development.

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

transformations of Ul models into corresponding code. In the
future a transition to a NoSQL database should also be studied
since it should fit better for SOA and MDA.

D. Related works

We can mention about several existing research works
which are aimed to describe the new generation of SOA
design patterns.

e Tsai et al. [16] has proposed a technique for dynamic
service composition. According to them the SOA
composition framework can be distinguished by the
following components:

1) Application Template Registry. 1t supplies the
application specification with UI requirements pending
realization. Developers are able to search, modify,

upload and reuse the templates in the registry.

2) UI Service Registry. It includes the Uls from the
service provider. It provides Ul discovery and matching
service to the application developer by publishing the
Ul profile. It also offers application specification

template subscription service to the Ul services.

3)

UI Composition Service. Tt plays an important role in
the SOA-UI framework. It allows combining different

The following research is able to

lead to automatic

services to a new one which satisfies developers’
needs.

TABLE I. FUNCTIONS AND USED SCENARIOS

Functions Definition Example
View tires Customer uses the service for management of Mpr. Paterson lives in Lappeenranta. He has family and 2 cars. Totally with summer and
added to the tires records. After authentication he or she can winter tires they have 16 tires, but they have also old tires. Mr. Paterson decides to count
system see all tires. the tires to understand what tires are necessary to change or send to recycling.

Add new tires Customer uses service for managing the tire
records and after authentication, he or she can
see all tires which system is monitoring, and add
new tires with the amount of seasons tires can

be used, name of tires, and type (winter or

Last year you bought a new car and recently you bought winter tires for it. You have
used already the Tire Recycling service and want to add new tires.

Mpr. Paterson lives in Lappeenranta. He has family and 2 cars. For summer and winter,
the family has 16 tires, but they have also old tires. Mr. Paterson decides to update the
property season of records according the current situation.

Jessica lives in Helsinki and she has a car. She bought the car in summer and she
doesn’t know it well yet. Jessica’s friend Tony advised her to use Tires recycling,
because he has had a car for several years, he knows that used tires should be recycled
since it decreases the pollution of environment. Before the I of December, Jessica gets
notification by e-mail via her tablet including information about the date for changing
the summer tires to winter ones. This notification also includes offers of new winter tires
from garage and other best offers.

summer).

Edit options Customer uses the service for managing the
of'the tires records about tires and after authentication, he

or she can see all tires the system is monitoring,

and change the amount of seasons, name of
tires, and type of already entered tires.

Get The back-end service runs every day and based
notification on the defined conditions, the system decides to
about the date | send notification in HTML with embedded data
to change via SMTP to user.
tires
Get The back-end service runs every day and based
notification on the defined conditions, the system decides to
about the send notification in HTML with embedded data
temperature via SMTP to user.
to change
tires

Jessica lives in Helsinki and she has a car. She bought the car in summer and she
doesn’t know it well yet. Jessica’s friend Tony advised her to use Tires recycling,
because he has had a car for ages and he knows that used tires should be recycled since
it decreases the pollution of environment. Before the 16" of November, when the weather
Jorecast shows snowstorm and -5 C degrees, Jessica gets a notification by e-mail and
opens it at to her tablet. This notification includes information about a date for changing
of summer tires to winter tires to decrease the probability of traffic incidents. This
notification will also include offers of new winter tires from garage and other best offers.

426

PROCEEDING OF THE 18TH CONFERENCE OF FRUCT ASSOCIATION

1) Ontology System. It provides the relationships and
searching for Ul-related elements. The ontology should
include Ul classification information.

The weak side of this research is no any points to
implementation.

Gamma [17] has focused on interfaces which can extend
the existed functionality of classes, but it is necessary to
anticipate the exact methods of interface in design phase
and during the improvement of application we need to
monitor the dependences.

Kaminski et al. [18] has talked about combining of
different versions and proposed “Chain of adapters”
pattern. But this approach means the reconfiguring the
whole application, but not combining the separate
services.

VL

The standardization of the software development process
and the normalization of a Ul model are required as never
before. SOA appears like an appropriate architectural model.
However, SOA is generally discussed in the context of
program-to-program interactions. This article describes how
the SOA programming model can be used for the development
of human-facing services. The review and the case study we
conducted suggest that a SOA is suitable for multi-platform
and multi-devices UI. The proposed SOA-MUI pattern for
provides a baseline pattern for a successful architecture,
development and deployment of mobile applications with
diverse Ul in SOAs.

We first studied four different approaches to the
development: RWD, progressive enhancement based on
browser-, device-, or feature-detection, markup languages-
based approaches, and SOA-UI. We summarized their
advantages and weaknesses as a result of this analysis, which
showed the perspectives of SOA approach to MUI. The SOA-
MUI design process can be aligned with the SOMA
methodology. The practical part of this work includes the
implementation of the proposed SOA-MUI.

CONCLUSION

The novelty is a new SOA-UI pattern, used in practice to
produce distributed services which can interact with users
without limitation of single platform or OS. The SOA-MUI
means the new SOA design pattern emphasizing the
distributed approach to ULIn a future we see the extension in
the research how the proposed SOA-MUI maybe useful for
design the successful architecture, development and
deployment of mobile applications with diverse UI.

427

ACKNOWLEDGMENT

The work is supported by the Saint-Petersburg National
Research University of Information Technology, Mechanics &
Optics (ITMO University) and Lappeenranta University of
Technology. We would like to express the deepest
appreciation to Professor Uolevi Nikula.

REFERENCES

A. Seffah, H. Javahery, Multiple User Interfaces: Multiple-Devices,
Cross-Platform and Context-Awareness, Wiley and Sons, 2004.

[1]
[2] F. Nunamaker, M. Chen, D. M.P. Titus, “Systems Development in
Information Systems Research”, Twenty-Third Annual Hawaii
International Conference System Science, vol. 3, 1990, pp. 89-106.

[3] K. De Graeve, HTMLS - Responsive Web Design, Web:
https://msdn.microsoft.com/en-us/magazine/hh653584 .aspx.
[4] E. Marcotte, Responsive Web Design, Web:

https://alistapart.com/article/responsive-web-design.
[5] M. Abrams, J. Helms, User interface markup language (UIML)
specification, Web: https://www.oasis-
open.org/committees/download.php/5937/uiml-core-3.1-dra%20ft-

01-20040311.pdf.

M.F. Ali, M.A. Pérez-Quifiones, E. Shell, M. Abrams, Building
Multi-Platform User Interfaces with UIML, Springer Netherlands,
2002.

B. Castle, Introduction to web services for remote portlets, Web:
http://www.ibm.com/developerworks/ru/library/ws-wsrp/index.html.

[6]

[7]
[8] P.Jain, P., D. Schmidt, “Service configurator: a pattern for dynamic
configuration of services”. In Proceedings of the 3rd conference on
USENIX Conference on Object-Oriented Technologies (COOTS),
vol.3, 1997, pp.16-17.

T. Erl, SOA Design Patterns, 2009. 1st Ed. Prentice Hall PTR.

T. Erl, Service-Oriented Architecture (SOA) Concepts, Technology
and Design, 2005, Prentice Hall PTR.

A. Arsanjani, S. Ghosh, S., A. Allam, T. Abdollah, S. Ganapathy, K.
Holley, “SOMA: A method for developing service-oriented
solutions”, IBM Systems Journal, 47 (3), 2004, pp. 377-395

Dr. M. Lui, M. Gray, A. Chan, J. Long J., Pro Spring Integration,
Apress, 2011.

D. Odell, D., Design Patterns: Architectural, Apress, 2014.

JJ. Garrett, Ajax: A New Approach to Web Applications, Web:
https://courses.cs.washington.edu/courses/cse490h/07sp/readings/aja
x_adaptive_path.pdf

H.-K.Kim, T.-H Kim, “SOA Modeling Based on MDA”, Distributed
Computing and Artificial Intelligence, Ith International Conference
Advances in Intelligent Systems and Computing, vol. 29, 2014, pp.
181-194.

W.T. Tsai, Q. Huang, J. Elston, Y. Chen, “Service-Oriented User
Interface Modeling and Composition. Research Challenges in
Information Science (RCIS)”, IEEE International Conference on e-
Business Engineering, 2008, pp. 21-28.

[9]
[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17] E. Gamma, Pattern languages of program design 3, Addison-Wesley

Longman Publishing Co, 1997, pp. 79-85.

P. Kaminski, H. Muller, H., M. Litoiu, A design for adaptive web
service evolution”, In Proceedings of the International workshop on
Self-adaptation and self-managing systems (SEAMS *06), pp. 86-92.

[18]

