PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

On Mobile Bluetooth Tags

Dmitry Namiot
Lomonosov Moscow State University
Moscow, Russia
dnamiot@gmail.com

Abstract—This paper presents a new approach for hyper-
local data sharing and delivery on the base of discoverable
Bluetooth nodes. Our approach allows customers to associate
user-defined data with network nodes and use a special mobile
application (context-aware browser) for presenting this
information to mobile users in proximity. Alternatively,
mobile services can request and share local data in M2M
applications rely on network proximity. Bluetooth nodes in
cars are among the best candidates for the role of the bearing
nodes.

I. INTRODUCTION

Our paper is devoted to so-called context-aware
computing. An original paper, introduced the term ‘context-
aware’ [1] refers to context as location, identities of nearby
people and objects, and changes to those objects. In other
words, context is any information that can be used to
characterize the situation of an entity. An entity here is a
person, place, or object that is considered relevant to the
interaction between a user and an application. This
definition includes the user and applications themselves.
This description makes it easier for an application
developer to enumerate the context for a given application
scenario [2].

There are plenty of papers devoted to context-aware
(ubiquitous) computing [3, 4]. The reasons are obvious.
From the end-users (customers) point of view, context-
aware is a deep customization (localization) for data. It is
precisely tuned output for mobile applications. Context
processing lets us decide what kind of information should
be presented for our users right now at this place exactly.
Crawling of context dictates what kind of calculation
should be done, what kind of requests to the external
services to be raised, etc.

Actually, all the calculations for mobile users should be
context-aware (for the ideal application, of course).

As it is mentioned above, the context is practically
everything we can measure. But of course, for the practical
applications we need some classification. On the first hand,
we need some metrics, of course. In any case, our potential
context should be measurable. So, the typical candidates are
sound, light, accelerometer, etc. Among all this variety is
quite obvious position - network infrastructure. It means

Manfred Sneps-Sneppe
Ventspils University College
Ventspils, Latvia
manfreds.sneps@gmail.com

that data available for mobile users could depend on the
current state of the wireless infrastructure. And this state is
a well known fingerprint [5]. For example, Wi-Fi
fingerprint is a set of Wi-Fi access points and the signal
strength with which they were heard. Some mobile
application can show data to mobile users depends on the
current fingerprint. Let us present just one example. It is
enough to see the “visible” Wi-Fi access point in order to
conclude which building and which floor we are in for the
most of the buildings in MSU campus. Note, we do not
need the location here. The wireless network fingerprint is
enough for detecting the place. Also, we do not need the
connectivity for the detected nodes. Their visibility is
enough. The same is true for Bluetooth. It is so called
network proximity [6]. The place here is not a location, but
a proximity to some network nodes.

Network nodes could be mobile. E.g., Wi-Fi access point
(Bluetooth node) used in fingerprint could be created right
on a mobile phone, for example [7]. And Bluetooth nodes
could be in cars too. For in car installation at least one
important problem (power supply) is solved. Shortly, this
approach was presented in [8]. And this paper discusses the
latest development for this application.

The rest of the paper is organized as follows. In section
IT we describe related works. Section III introduces our
concept of Bluetooth Data Points, Section IV discusses data
persistence, Section V describes the prototype and Section
V1 is devoted to a discussion.

II. RELATED WORKS

On the first hand, we can mention here our own SpotEx
(Spot Expert) approach [9]. SpotEx links user-defined data
and Wi-Fi nodes (Wi-Fi access points). For doing this,
SpotEx introduces an external database with user-defined
rules (productions or if-then operators) related to the Wi-Fi
access points. Typical examples of conditions in our rules
are:

IF Access Point with SSID Café IS
visible AND RSSI (signal strength) 1is
within the given interval THEN

{activate some predefined content for
mobile users}

ISSN 2305-7254

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

So, this service contains the following components:

o database (data store) with the productions (rules)

associated with Wi-Fi networks;

rule editor. It is a web application (including mobile
web) which lets users add (edit) rule-set, associated
with Wi-Fi networks;

mobile application (context-aware browser). This
browser detects Wi-Fi networks, checks the current
conditions against the database of productions and
executes rules (activates content).

Context-aware browse, based on the existing rules and
discovered network environment, makes the above-
mentioned user-defined content to be visible for mobile
users. In other words, the visibility of mobile content
depends on the network context (Wi-Fi network
environment). Mobile users will see content which is
relevant to their location. And the relevance here is user-
defined. Content’s owner describes the conditions for
activations in the form of network proximity rules. Fig. 1
illustrates this.

http://linkstore.ru/spotex/mlist.jsp... O

Spot expert. Rules:

m1_net:
Huge discounts in section B2

m1_net:
Best cafe in San Francisco

acim:
See my offers

wifi-acin:
Test

dsaz:
See my offers

Home

Fig. 1. SpotEx in-proximity rules

By the similar principles it could be done for Bluetooth
nodes in the discoverable mode too.

The second example is an iBeacon from Apple [10]. The
iBeacon is a tag with Bluetooth Low Energy chip [11]. The
iBeacon simply broadcasts a presence message once per
second to other devices within range of the Bluetooth radio

(Fig. 2).

It has a few identifying characteristics so that apps can
distinguish the iBeacons they’re interested in from a

326

crowd [12]. Note that the iBeacon broadcasts have no data
payload.

| see 2 iBeacons

Here | am! Here |l am!
1 ® ‘
E:i‘r"cljc\?;e? i0S device i0S device

Fig. 2. iBeacons broadcasts [12]

iBeacons simply identify themselves via a UUID (unique
identifier) and 2 numbers (“major” and “minor”).
Originally (i0S platform) mobile application can only
listen for specific UUIDs provided by the developer. On the
Android platform mobile application can see a list of all
iBeacons in proximity. The major and minor numbers could
be configured to distinguish the tags within the particular
application. Again, depends on the visible tags, mobile
application can activate some content for mobile users
(mobile devices).

Both approaches are very similar. For SpotEx, the
identification of the wireless node (e.g. MAC-address)
plays the role of the UUID. And there is no need for the
dedicated tag. In both cases, the content is separated from
the network elements.

The paper [13] presents the concept of vehicular ad-hoc
networks enables. The paper [14] discusses the effective
data broadcasting. And our paper [15] discusses the role of
Data Program Interfaces in mobile sensing.

III. BLUETOOTH DATA POINTS

Bluetooth Data Points (BDP) are Core Bluetooth nodes in
discoverable mode which have some data associated with
them. An idea for BDP was presented and described in the
paper [16].

Let us see iBeacons core idea. We have some constant
broadcast and a set of receivers. We need BLE just because
broadcasted devices have no external power. But any Core
Bluetooth node in discoverable mode is also a broadcaster.
We can treat the MAC-address as a UUID. The power
supply is not problem in case of cars. And Core Bluetooth
makes this broadcast available for the widest set of devices.

We can even estimate the distance using RSSI (iBeacons
use the similar approach — Figure 3). The standard approach
is to measure the RSSI value at several prior-set distances
between two phones in different environments. After that, a
regression model could be constructed that depicts the

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

relationship between RSSI level and distance. Moreover, we
can estimate the uncertainty error when translating RSSI to
distance.

For Bluetooth tag the distance estimation could be based
on the ratio of the tag’s signal strength (RSSI) over the
calibrated transmitter power (Fig. 3). The power is the
known measured signal strength in RSSI at 1 meter away.
Each tag (iBeacon in case of iOS) must be calibrated with
this power value to allow the accurate distance estimation.
The iBeacon output power is measured (calibrated) at a
distance of 1 meter. Let's suppose that this is R;. The
listening device will measure the RSSI of the device. Let's
suppose it is R,. Since these numbers are in dBm, the ratio of
the power is actually the difference in dB. So:

dBm_ratio = R;-R, (1

To convert that into a linear ratio, we use the standard
formula:

linear ratio = 1Q(Bm.ratio/10)

2

If we take into account the conservation of energy, then
the signal strength must fall off as 1/r* (» here is a distance).
So:

R=R, /1 (3)
r= 4/linear _ratio 4)

Note, that, if our device is inside some building, then
perhaps there will be internal reflections that make the
signal decay slower than 1/1"2. If the signal passes through
a human body (water) then the signal will be attenuated. It's
very likely that the antenna doesn't have equal gain in all
directions. Metal objects in the room may create strange
interference patterns.

Near

Immediate

IBeacon

Fig. 3. RSSI based distance [12]

327

Now, we can associate some data with our broadcasters
(Bluetooth nodes). It is similar to the location based
systems. Their core is a database linked location (latitude
and longitude pair) with any user-defined information. In
BDP we can have a similar database, where MAC-
addresses are linked with user-defined data. After that we
have two main possibilities for mobile applications. Firstly,
the application can obtain current fingerprint (get
information about nearby nodes) and use it for obtaining
local-related data from this database. Secondly, such a scan
could be performed on the background and mobile user will
get push-notifications with payloads related to local data
[17]. Of course, mobile application with some user
interface could be replaced with some automatic service.
So, this approach will work for M2M applications too [18].
It is illustrated in Fig. 4.

Let us provide yet another analogue for the main idea.
BDP does not introduce a new network for cars, like
presented in [19]. All data in this model are located and
transported outside of Bluetooth nodes in cars. Bluetooth
nodes play a role of presence sensors only.

Fig. 4. Data Flow

The closest analogues are so called second screen
applications [20]. It is about social networks for users of
TV shows. Originally, it was planned to program them right
on Smart TV. But nowadays, TV is just an initiator. The
network for viewers exists in parallel on mobile devices
carried by users anyway.

IV. ON DATA PERSISTENCE

Conceptually, the data base for content has got a very
simple structure. Data will be described individually for the
each Bluetooth point. So, we have a key (MAC-address)
and a vector of data chunks (texts, images, etc.) It is a
typical key-value data model. This data model is one of the
most used models for NoSQL approach. One of available
examples of this project is Apache Accumulo [21]. It is

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

distributed key-value store. Actually, the whole database
for BDP could be a distributed hash table. The table rows as
key-value pairs to provide a fast way to look up by a key
item as attribute given by the value of a column qualifier of
a row. In order to support lookups by more than one
attribute of an entity, additional indexes can be built.

Data is represented as key-value pairs, where the key is
comprised of the following elements: RowID, Column
(Family, Qualifier, Visibility) and Timestamp. All elements
of the Key and the Value are represented as byte arrays
except for Timestamp, which is a Long. Accumulo sorts
keys by element and lexicographically in ascending order.
Timestamps are sorted in descending order so that later
versions of the same Key appear first in a sequential scan.
Tables consist of a set of sorted key-value pairs [22].

In terms of data design, BDP store the following
information:

(recordID, MAC address, data array)

Each record describes a one data chunk (information
element) for the given (MAC_address) Bluetooth node. Of
course, we could have more than one information element
for the same node.

If we think about statistics and performance, then each
record should have, at least, two new fields: date when this
element was created and last modified date when the record
was last time modified. Also, we can allow users to switch
on/off existing announces. Finally, we can propose the
following structure for our records:

(recordID,
timestamp created,
status, data array)

MAC address,
timestamp modified,

here status field presents the Boolean (or the integer
1/0) value. It describes the current status for this data
chunk.

Data array contains JSON structures. They describe
content for the given data chunk. We choose JSON in order
to keep the flexibility (easy to add a new data type) and
move processing to the client side. JSON array, returned by
the system, contains a list of obtained data chunks:

[
{

“type”:”some type”,”data”:”some data”},

{(“type”: ...}, ...

]

Note that the same kind of data will be returned by the
programming API too. The field #ype here describes one of
the standard types supported by the system. On the current
stage, this system supports the following types: text, url,
image, email, phone, fbprofile, twprofile. The text here is a
sequence of chars, url and image describe some web-
resource, fbprofile and twprofile are also web resources, but

328

have a special meaning also. E.g., fbprofile is URL for
some profile in Facebook, tprofile is the same for Twitter.
It lets different programming clients decide by their own
how to display (how to render) data. E.g., one client may
render this as an ordinary hyperlink, the second may show a
picture from the Facebook profile (obtained via public
Facebook API), etc.

The typical query requests data by MAC address. So, it
is a direct scan via the primary index and it will be fast. The
benchmark shows that Apache Accumulo can support very
high levels of sustained throughputs of 100 million
transactions per second [23].

As per collected statistics, the system can accumulate
“browsing” events. An event here is the fact states that the
device with address MAC; requests a data chunk provided
by the device MAC, at the time ¢.

The basic algorithm as it is described above is very
transparent. Our context-aware “browser” obtains a list of
the visible Bluetooth node. Than for the each node we can
perform database scan (lookup) and get data associated
with this node. This request simply returns nothing in the
case of Bluetooth nodes without associated data. All
collected data could be packed in JSON array and this array
will be returned back to the “browser”. And the browser
will perform data rendering. Nodes in the array could be
sorted by the obtained RSSI (signal strength). In the normal
case, most of the nearby Bluetooth nodes will be “empty”
(they will be out of BDP circle). So, we can decrease the
number of database lookups with some cache.

A Bloom filter is a method for representing a set of »
elements 4 = {a;, a,,...,a,} also called keys to support
membership queries.

The idea is to allocate a vector V of m bits, initially all
set to 0, and then choose k independent hash functions, K =
{hy, hy, ..., hy}, each with a range {l,...,m}. For each
element a € 4, the bits at positions h;(a), hy(a), ..., h(a) in
V are set to 1. Any particular bit might be set to 1 multiple
times. Given a query for b (query is a key here) we check
the bits at positions h(b), hy(b), ..., hi(b). If any of them is
0, then certainly our key b is not in the set 4. Otherwise, we
conclude that b is in the set A. Keys here are MAC-
addresses. The conclusion that some key is not in the cache
lets us avoid extra request to database.

At the same time there is a certain probability for so
called “false positive”. In other words, we can make the
false conclusion about presence MAC-address in the cache.
The parameters k& and m should be chosen such that the
probability of a false positive (and hence a false hit to the
database) is acceptable.

For Bloom filters we have a clear tradeoff between m
and the probability of a false positive. Observe that after

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

inserting n keys into a table of size m, the probability that a
particular bit is still 0 is exactly

&)
So, the probability of a false positive in this situation is

1 kn
d-d-—)") (6)
m

k

The latest expression could be approximated with this
expression

(1_ekn/m)k

(N

It lets us, finally, to calculate false positive rate under
various m/n and k combinations [24].

V. OUR PROTOTYPE

As a prototype, we’ve developed Android mobile
application. It is available in Google Play [25]. It lets
simulate the whole data flow. There are two parties (two
mobile phones). One user can post some data to the cloud
and link them to the own device. For posted data
application starts (opens) Bluetooth node (right on poster’s
phone). So, posted data will be associated with the MAC-
address of author’s phone. It is illustrated in Fig. 5.

The second party (parties) can start context-aware
browser. This browser scans Bluetooth nodes in the
proximity. For the each node it checks node’s data on the
cloud. It is the place for the above mentioned cache filter.
In order to decrease the real hits to database, we check
Bluetooth node against our cache. If the filter is positive,
we can request (pull) data from our store.

By this way, browser accumulates all data chunks linked
to the nearby Bluetooth nodes and shows them for user

(Fig. 6).

I [e T

@ Bluetooth permission
request
An application on your phone
is requesting permission to
turn on Bluetooth and to make
your phone discoverable by
other devices for 120 seconds.
Do you want to do this?

—

Fig. 5. Create BDP

329

As data chunks (linked data) we can use anything, that
could be presented in HTML. So, it could be some URL,
phone number (the browser makes it clickable), email,
Twitter name, etc.

De-facto, browser uses REST based API for access to
the database. This API returns obtained data as JSON array.
Its interpretation is performed right in the applications. Of
course, the same API could be used from another
application. It is how M2M applications can work with
BDP.

X .l 7 10:26 am

Browse local data
Refresh
Discounts for visitors @abava

cheap taxi +7 (123) 456-7890

Please, get you coupon from
http://servietsuite.com

Fig. 6. BDP Browser

VI. DISCUSSION

It is an open question (and subject to a separate research) -
how to use the standard (modified) mobile browser as
“context-aware” browser. Our initial experiments show,
for example, that we can use a custom WebView control in
Android OS for passing wireless context information right
to JavaScript code. This feature opens the way for the
incorporation of Bluetooth proximity processing right into
web pages.

As per other context-aware models we can mention at
least two use cases. On the first hand, it is localized
communications (e.g., peer to peer chat and discussion
groups). E.g., some mobile application can provide a link
to the discussion group (forum) for all mobile users who
can see a particular wireless network node. The link
itself depends on the network node (e.g., its MAC-address).
So, the discussion (chat) will be visible for those mobile
users who are in the proximity to that node right now. It
lets us “localize” communication channels. Users will chat
(discuss) with pals in the physical proximity.

The next useful use case is associated with social
streams. It is like a customized check-in [26]. Mobile users

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

can link (associate) own profile on the social network
(Facebook, Linkedin, etc.) with Bluetooth node on the own
phone. So, as soon as Bluetooth node is on, mobile users
with BDP “browser” explained above will be able to see the
profiles for nearby users from the same social network.
Think, for example about the conference, where visitors can
advertise own profiles in Linkedin via Bluetooth.

And the classical example is, of course, some
classified system. The author can link own announce to the
mobile network node on the own phone. So, it is very easy
to make it readable for the nearby mobile users. It could be
done by switching on/off the mobile node (e.g., switch
on/off a Bluetooth node, open/close Wi-Fi access point).
And user-defined content (classified) is traveling with the
mobile phone (actually, with the author/owner). The
content is available (readable) right there (and only there),
where there is a mobile phone and where, consequently, is
the author of the ads. And the author (owner) controls the
visibility of own ad.

VII. CONCLUSION

In this paper, we present a yet another approach for
hyper-local data sharing and delivery on the base of
discoverable Bluetooth nodes. Our discoverable data-hubs
(Bluetooth Data Points) allow customers to associate any
user-defined data with the programmatically created
wireless network nodes. This process creates a distributed
store of localized data. A special mobile application
(context-aware browser) or service (in case of M2M
applications) lets present this local information to mobile
users or other services in proximity. For the mobile
network nodes, associated data will “follow” them too. This
data “movement” makes them available only in the
proximity to the current location of data owner (creator).

ACKNOWLEDGMENT

We would like to thank prof. V.Vishnevsky for the
valuable discussions.

REFERENCES

G. Schilit, B. Theimer, “Disseminating Active Map Information
to Mobile Hosts”,. IEEE Network, vol. 8, no. 5, 1994, pp. 22-32
D.Namiot, M.Sneps-Sneppe, “Wireless Networks Sensors and
Social Streams”, In Advanced Information Networking and
Applications Workshops (WAINA), 2013 27th International
Conference on, pp. 413-418. IEEE.

S.Poslad, Ubiquitous computing: smart devices, environments
and interactions. John Wiley & Sons, 2011.

C.Perera, et al. "Context aware computing for the internet of
things: A survey", 2013, pp. 1-41.

Y.C. Cheng, Y.Chawathe, A.LaMarca, J.Krumm, “Accuracy
characterization for metropolitan-scale Wi-Fi localization”, In
Proceedings of the 3rd international conference on Mobile
systems, applications, and services, 2005, pp. 233-245. ACM.
D.Namiot, M.Sneps-Sneppe, “Geofence and Network Proximity”,
In Internet of Things, Smart Spaces, and Next Generation

(1]

330

[7]

[8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

Networking, 2013, pp. 117-127. Springer Berlin Heidelberg.
D.Namiot, M.Sneps-Sneppe, “Proximity as a service. In Future
Internet Communications (BCFIC)”, 2012 2nd Baltic Congress
on, 2012, pp. 199-205. IEEE.

D.Namiot, M.Sneps-Sneppe, “CAT - cars as tags’, In
Communication Technologies for Vehicles (Nets4Cars-Fall),
2014 7th International Workshop on, 2014, pp. 50-53. IEEE.
DOI: 10.1109/Nets4CarsFall.2014.7000912

D.Namiot, M.Sneps-Sneppe, “Context-aware data discovery”, In
Intelligence in Next Generation Networks (ICIN), 2012 16th
International Conference on, 2012, pp. 134-141. IEEE.
N.Newman, “Apple iBeacon technology briefing”, Journal of
Direct, Data and Digital Marketing Practice, vol. 15, no. 3, 2014,
pp. 222-225.

C.Gomez, J. Oller, J. Paradells, “Overview and evaluation of
bluetooth low energy: An emerging low-power wireless
technology”, Sensors, vol. 12, no. 9, 2012, pp. 11734-11753.
iBeacon experiments http://blog.nerdery.com/2013/11/nerdery-
labs-ibeacon-experiments/ Received: Jun, 2014.

F.Dressler, H.Hartenstein, et al., “Inter-vehicle communications:
Quo vadis”, Communication Magazine , IEEE, vol. 52, no. 6,
2014, pp. 170-177

Campolo, Claudia, et al. "Modeling prioritized broadcasting in
multichannel vehicular networks." Vehicular Technology, IEEE
Transactions on vol. 61, no. 2, 2012, pp. 687-701

D. Namiot, M. Sneps-Sneppe, “On software standards for smart
cities: API or DPIL. In ITU Kaleidoscope Academic conference:
Living in a convergent word-Impossible without standards?”,
Proceedings of the 2014, pp. 169-174, IEEE

D.E. Namiot, “Mobil'nye Bluetooth tegi”, International Journal
of Open Information Technologies, vol. 2, no. 5, 2014, pp. 17-23.
(in Russian) http://www.injoit.org/index.php/j1/article/view/102
D. Namiot, M. Sneps-Sneppe, “Local messages for smartphones”,
In Future Internet Communications (CFIC), 2013 Conference on,
2013, pp. 1-6. IEEE.

J.Healey, C.C. Wang, A. Dopfer, C.C. Yu, “M2M gossip: why
might we want cars to talk about us?”, In Proceedings of the 4th
International Conference on Automotive User Interfaces and
Interactive Vehicular Applications , 2012, pp. 265-268. ACM.

M. Gerla, E.K. Lee, G. Pau, U. Lee, “Internet of vehicles: From
intelligent grid to autonomous cars and vehicular clouds”, In
Internet of Things (WF-10T), 2014 IEEE World Forum on, 2014,
pp. 241-246. IEEE.

C. Courtois, E. D'heer, “Second screen applications and tablet
users: constellation, awareness, experience, and interest”, In
Proceedings of the 10th European conference on Interactive tv
and video, 2012, pp. 153-156. ACM

J.Kepner, W.Arcand, W.Bergeron, N.Bliss, R.Bond, C.Byun,
C.Yee, “Dynamic distributed dimensional data model (D4M)
database and computation system”, In Acoustics, Speech and

Signal Processing (ICASSP), 2012 IEEE International
Conference on, pp. 5349-5352. IEEE.
Accumuo User Manual

https://accumulo.apache.org/1.6/accumulo_user manual.html# in
troduction Retrieved: Jul, 2014

R.Sen, A.Farris, P. Guerra, “Benchmarking Apache Accumulo
BigData Distributed Table Store Using Its Continuous Test
Suite”, In Big Data (BigData Congress), 2013 IEEE International
Congress on, 2013, pp. 334-341. IEEE.

A.Broder, M. Mitzenmacher, “Network applications of bloom
filters: A survey”, Internet mathematics, vol. 1, no. 4, 2004, pp.
485-509.

Bluetooth Data Points (BDP) http://bdp.linkstore.ru Retrieved:
Jun, 2014

D. Namiot, M. Sneps-Sneppe, “Customized check-in
procedures”, In Smart Spaces and Next Generation
Wired/Wireless Networking, 2001, pp. 160-164. Springer Berlin
Heidelberg

