PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

A Simple Information Flow Security Model for
Software-Defined Networks

Dmitry Ju. Chalyy, Evgeny S. Nikitin, Ekaterina Ju. Antoshina
P.G. Demidov Yaroslavl State University
Yaroslavl, Russia
chaly @uniyar.ac.ru, nik.zhenya@gmail.com, kantoshina@ gmail.com

Abstract—The software-defined networks (SDN) is an emerg-
ing paradigm of the networking which became a enabler technol-
ogy for many modern applications. Cloud computing is a promi-
nent example in the list of such applications including policy-
based access control, network virtualization and others. Software
nature of the network management can provide flexibility and
fast-paced innovations in the netwoking. The other side arise
from a complex nature of software, thus, an increasing need for a
means to assure its correctness and security. Despite of industrial
introduction in cloud environements and other settings there is
still a need for abstract models for SDN to tackle challenges in
many directions: behavioural models, security models etc. [3].

The security is a broad field of study even if we limit our
attention to software-defined networks security. Furthermore, we
bring the confidentiality into our focus. This property asserts
that the secret data can not be inferred by an attacker or
unintentionally. This is a critical property for multi-tenant SDN
environements since the network management software must
ensure that no confidential data of one tenant are leaked to other
tenants in spite of using the same physical infrastructure. We
define a notion of end-to-end security in context of softare-defined
networks and propose a model which makes possible to reason
about confidentiality and to check that confidential information
flows does not interfere with non-confidential ones.

I. INTRODUCTION

The traditional approach to the networking assumes that the
network is constructed using vendor-specific hardware which
is tightly coupled with a proprietary software implementing
distributed protocols. Protocols can provide various services
including topology discovery, routing, access control, quality
of service and other features. Network operators must install
these devices, configure them and set necessary settings for
every protocol they intend to use. This tight integration of
forwarding and control functionality within proprietary devices
restricts innovations and slows down introduction of new
network services to modern networks. Bringing open standards
and programmability to networks are key points of introduction
of software-defined networks (SDN).

Software-defined networks has drawed a lot of attention in
recent years and provide a rich set of concepts for centralized
management of modern networks. The main principles of
SDNs is to provide general principles of packet forwarding
level of networks and to decouple control software from
forwarding devices. This makes possible to bring innovations
to networks without changing the underlying hardware just re-
lying on well-defined standard collection of packet-processing
functions which are formed the body of the OpenFlow stan-
dard [8]. The SDN controller platform provides the centralized

management and orchestration of the whole network inspecting
network packets and installing forwarding rules to OpenFlow
switches under management.

However, open standards does not solve security prob-
lems which are the great challenge in todays networking.
An overview of recent challenges for the network security in
context of software-defined networks are highlighted in [2].
The centralized control of SDN can benefit in enforcing secu-
rity strategies but the lack of the models makes this problem
challenging [3]. When speaking of network security more pre-
cisely we can discuss three problems: integrity, availability and
confidentiality. The integrity assumes no data is corrupt due to
internal or external events or missconfiguration. Configuration
errors can lead to network partioning or misbehaving. For
example, this can arise when multiple users write conflicting
forwarding rules to OpenFlow switches. This problem was
in the focus of research in [10] where authors propose a
model checking-based approach to solve such inconsistencies.
The availability property means that data is available when
is needed. At some extent this property is achieved by load
balancing in SDN [12]. The confidentiality considers that
secret data cannot be inferred by the attacker. This policy
can be imposed using access control lists, encryption etc. The
recent research in this direction is represented by works on
access control list introduction to SDN [11]. We will focus in
our work in confidentiality.

The confidentiality property can be seen in a broad sense
but we focus our attention to the end-to-end confidentiality
where we must ensure that confidential data is not inferred by
the attacker or unintentionally. The confidentiality is hard to
achieve even if the system under consideration is not exposed
to attacks and we consider insecurities arised form uninten-
tional bugs in implementation. The support for confidentiality
checking must be integrated in every high-level language for
programming networks. The confidentiality at some extent can
be achieved when network resources are separated from each
other in slices [5], however, slices are rather isolate part of the
network than check confidentiality.

There is an extensive work on semantic foundations of
networking programming languages which can provide a solid
basis for reasoning about networks. One of the first attemps
is Frenetic [6] language which provide abstractions for SDN
programming and means for combining these abstractions in a
meningful and consistent way. The NetKAT [7] project define
such a semantic which can prove reachability in networks and
address several security properties at once but the decision
procedure for this formalism has PSPACE complexity. On the

ISSN 2305-7254

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

other hand the confidentiality property was investigated for
programming languages [1] and implemented for model [14]
and industry-level languages [13]. This approach is based on
rigorous semantic rules which impose restrictions for informa-
tion flows in programming languages. The main idea is not to
isolate flows belonging to various slices but allow the network
be organized in such a way that different security levels can
be used for identifying flows. In our model all hosts can have
security levels and proposed type system automatically decides
whether the flow is secure.

II. INFORMATION SECURITY MODEL FOR SDN
A. Security models for programming languages

The last two decades showed an increasing interest to
security problems in programming languages since there are
many critical applications in military, finance, web, medical
and many other systems. Traditional programming languages
does not have means to preserve confidentiality on a solid
basis. Such a solid basis can be achieved using formal methods
based on rigorous semantics. Language-based formalisms for
enforcing information flow security are appealing tools for
tackling this challenge.

The first look to the confidentiality is to enforce isolation
mechanisms for different security levels. This can not be
recognized as a satisfactory approach since programmers tend
to open communication channels across isolation boundaries.
Information-flow control allow to analyze such a fine-grained
policies defining security semantics for programming lan-
guages. Once defined and incorporated to the programming
language such a semantic can help to prevent insecure in-
formation flows. The key property of a secure information
flow is noninterference which essentialy means that a variation
of confidential variable does not cause a variation of public
variable. In our context we define noninterference as a policy
where confidential network flows does not produce any effect
on non-confidential.

Static and dynamic language-based security analysis is
approved in many areas: mobile programs [17], data bases [18],
hardware design [15] and web programming [16]. In this
work we try to apply similar approach to a broad domain of
software-defined networks.

B. Software-Defined Network Model

The main idea behind software-defined network approach
is separation of data and control planes of the network. The
data plane, or forwarding plane, main responsibility is to
do operations on packets arriving to inbound interface. The
set of operations can be very rich but the basic ones are:
forward to a specific switch interface, drop, update packet
headers and many others. The control plane decides when such
operations must take place. It must maintain a network state
and provide necessary functionality such as calculate routes,
support security and install forwarding rules to switches.

Thus, the central entity of a software-defined network is a
managed switch which partition the network to multiple logical
networks and provide a common programming interface. Such
a switch represent a commodity hardware device which comply
to the OpenFlow switch specification [9]. The OpenFlow
switch is a main component of data plane of the network.

277

The controller is a principal component of the network
control plane which orchestrates OpenFlow switches. Thus,
the controller must be connected to a switch through a secure
channel [8]. The controller collect information about network
traffic, state of the links, interfaces and other events. Aggregat-
ing this information helps the controller to maintain network
state. Based on this state the controller makes decisions and
install forwarding rules to OpenFlow switches using OpenFlow
protocol. The controller can implement various applications
such as learning switch, a firewall, access control system and
many others. The OpenFlow standard does not impose any
restrictions to the controller or switch architecture, it rather
specify the interface between a switch and a controller.

The OpenFlow switch contains a set of physical or logical
ports which are the interfaces for passing packets between
the switch and the network. According to OpenFlow speci-
fication [9] the OpenFlow switch consists of an OpenFlow
channel, one or more flow tables, a group table. The OpenFlow
channel is used for managing the switch by the controller and
to pass relevant data about the traffic under management to the
controller. Forwarding and processing packets is implemented
by the means provided by flow tables. The controller can
add, update and modify flow entries in the flow tables of the
switch. Such an entry consists of match fields, counters and
a set of instructions to apply to matching packets. The group
table enables for a switch additional methods of forwarding by
representing a set of ports as a single entity. Thus, group tables
does not represent a fundamentally different abstraction and
can be modelled via flow tables. We exclude group tables out
of our consideration making our model as simple as possible.

Each arriving packet is matched to flow table entries
starting from the first one. If the match is found then the
instructions associated with this flow entry are executed. If the
packet mismatched to each table entry the outcome depends on
the table-miss flow entry. Such a packet can be passed to the
controller, dropped or handed to next flow table. In our work
we will assume that the packet is passed to the controller..

The standard [9] proposes a set of instructions which
describe packet forwarding, modification or a group table pro-
cessing. Switch designers are free in implementation decisions
of flow entry instructions provided that the semantics of the
instructions are preserved. Flow entries are removed from the
switch either a request from a controller, flow entry expiry
mechanism or the optional switch eviction mechanism.

Counters are the variables which contains statistical infor-
mation about flow, for example, received bytes, packets, packet
lookups, packets matches etc.

Let us consider a set of instructions which can be executed
if a packet is matched to a flow table entry. The standard
proposes instructions some of which are required to implement
by switch designers and the rest are optional instructions.
The action list is associated with each packet during packet
processing pipeline. The actions are executed in order specified
by the list and are applied immediately to the packet. We
consider only the following actions:

e Output. This action specifies the port to which the
associated packet will be forwarded.

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

e Drop. The packet can be discarded from the network
using this action.

e Set (optional). The set action allows to modify packet
header fields, such as IP and MAC addresses, various
tags etc.

e Delete. This action deletes flow entries according to a
match.

We limit us in considering only listed actions trying to
capture the most relevant OpenFlow processing features and
not to overwhelm the model.

Thus, we can limit our model to the following. Upon
receiving incoming packet p the controller emits an ordered list
of match fields each of which paired with an action. This list
is installed to the switch. We assume that initialy the controller
default miss-match action is to send the packet to the controller.

Summarizing, the controller implements specific network
applications. There are many of them. For example, the
controller can implement a simple hub application where it
installs such forwarding rules to a switch where the incoming
packet is flooded to all switch ports except ingress port. Other
applications include learning switch, where controller learns
what subnets are reachable from different switch ports and
install forwarding rules in such a manner that incoming packet
goes to a port from which it destination host is reachable,
otherwise it is flooded. The controller can implement various
security checking policies, for example, allowing to forward
packet from authenticated hosts and dropping packets from
other hosts.

C. End-to-end Security Model

We will consider a simple model for a software-defined
network. We will assume that a network consists of endpoints
or hosts which generate data traffic and a set of unified
intermediate nodes forwarding traffic. These forwarding de-
vices are OpenFlow switches implementing capabilities listed
in previous section. There is a single node representing a
controller application which is connected to all the switches
of the network and manage switches.

Since the controller application gather all the information
about network under management we can assume that the
security level of each endpoint is known. The security level can
be revealed using some kind of a protocol or can be defined
ad-hoc. For the sake of simplicity we will assume that there
are two kinds of endpoints: high security and low security
hosts. Since a host is identified by the IP address we can
think that the controller can map the space of IP addresses
of the network under management into a security level. We
will denote a security level of a host h as h : low or h : high.

The network itself or its subnets aggregates hosts with
different security levels. We will define security predicates
exists and forall which will have security types for a set
of hosts {h1,...,hp}:

{h1 :low, ... hy : low}

F forall(hy, ..., hy) : low M

278

10.0.0.1 10.0.2.1

10.0.2.2

10.0.1.1

10.0.1.2

@ |igh host O low host
B OpenFlow switch

Fig. 1. Sample network with high and low security hosts

{h1 : high, ..., hy : high}
F forall(hy,. .., hy) : high}

2

{h1,...,hyn: 3h; : high}
Fexists(hy, ..., hy) : high

3)

If the set of hosts is homogenous, so all the hosts have the
same security levels, then predicate forall can be typed and
the type value is the same as the type of any host in the set.
For the network depicted at the Fig. 1 the following holds:

forall({10.0.0.1,10.0.1.2}) : low,
forall({10.0.0.2,10.0.2.1}) : high

but
forall({10.0.1.2,10.0.2.1})

can not be typed. This predicate isolates high and low security
hosts. On the other hand the exists predicate is high only if
there exists a host in the set of hosts which type is high. For
example, exists({10.0.0.2,10.0.1.1}) : high. This predicate
can not be typed as low and our further discussion shows that
we only need to capture a possibility to reach a high security
host.

Each flow table entry contains a matching field. This
field is a predicate which partions a set of all flows through
the network. The standard [9] proposes that matching field
is a conjunctive predicate with each conjunct can impose
conditions on different parts of the packet header. Each flow
has a source and a destination host. Thus, a matching field
can be modelled as a pair match = (matchsy., matchqst),
where matchs,. is a template for matching source host of the
packet and matchgs: is a template for matching destination
host. We define functions src and dst which map a matching
field to the set of source and destination hosts respectively
which evaluate the matching field to be true. For example,
sr¢(10.0.0.X) = {10.0.0.1,10.0.0.2,10.0.0.3}. If the con-
troller gathers all the information about network hosts then
the security type of considered predicates can be effectively
computed.

The next part of the model is a packet processing context.
When the Openflow switch can not match the packet to any

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

flow table entry the switch can forward the packet to the
controller. The controller can examine header fields of the
packet specifically IP address/MAC or any other identifying
header field and determine which host emitted the packet.
The security type of this host imply the processing context of
the packet. The processing context defined in a straighforward
way:

F forall(sre(pkt)) : pe
[pc] F pkt

“

So the packet processing context pc agrees with the security
type of the source host which originally emitted the packet.
We consider a packet processing context as a first action in
the instruction list emitted by the controller.

If the controller decides to emit Qutput(port) action paired
with a matching condition match, then it can be typed as
following:

F exists(dst(match)) : high & exists(portset) : high
[high] = match x Output(port)

&)

F forall(sre(match)) : low
[low] b match x Output(port)

(6)

We denote as portset a set of hosts reachable from port
of the switch where the Output action will forward packets.
The reachability here is assumed in a broad fashion, i.e. if
there are links that form path from the port to a host then the
host is in the set portset. The definition of the portset imply
a strict condition on reachability, because the existence of a
such path does not guarantee that packets emitted from the
port can effectively reach the host from the portset. Some of
them, for example, may be dropped at an intermediate switch
of the path. Here we try to capture a potential reachability. The
set portset can be effectively computed since the controller
collects information about network graph.

The result of Output(port) typization depends heavily on
matching condition. If this condition forwards traffic to high
security hosts, then there must be a high security host reachable
from the port. In this case the security context of Output(port)
is high. If the source of the traffic is a low security host,
then it can be forwarded anywhere and the security con-
text of this action is low. The Output(port) action can not
be typed if match condition specifies that traffic from high
security hosts must be forwarded to low security host. In
such a case forall(src(match)) can not be typed as low and
exists(dst(match)) can not be typed as high implying that
premises for both rules does not hold.

The Drop action can be typed as following:

F forall(sre(match)) : pe
[pc] F match x Drop

O]

For the Drop action we strictly isolate flows of different
security levels, that is, if the flow originates from a low security
host then its packets can be dropped in a low context, otherwise

279

the context is high. Such a typization prevents high security
packet processing context to install drop rules to the switch
such that the rules drop low security packets. Violation of
such a behaviour can lead to a covert channel when low
security hosts discover that high security host installs such
a drop rule. Setting low type to the Drop rule ensures that low
security packet processing context can install a drop rule which
affects only low security flows. Non-interference property
holds even if we allow a low security packet processing context
to drop high security flows since no information about high
security flows can not be inferred. Discarding such a behaviour
guarantee integrity for high security hosts at some extent.

For the Set(pattern) action we propose the following rules:

F forall(sre(match)) : low F forall(sre(pattern)) : low
[low] - match x Set(pattern)

(®)
F forall(src(match)) : high
F forall(dst(match)) : high
F forall(dst(pattern)) : high
F forall(src(pattern)) : high ©)

[high] F match x Set(pattern)

The first rule guarantees that any low security flow can not
become a high security flow by changing the source address
of the packet. Imposing such a condition we achieve a certain
level of integrity since a low packet can not start to be a high
packet and become a reason for a controller to influence to
other high security flows. The second rule assures that a high
security flow stays a high security flow making sure that there
is no information leak to the low security plane.

The security type of the Delete action can be inferred using
the following rules:

F forall(dst(match)) : high
[high] - match x Delete

(10)

F forall(sre(match)) : low
[low] F match x Delete

(1D

These two rules guarantee that the eviction of flows from
the switch is done in the respective security context.

Actions are combined to the list starting with packet
processing context virtual action using the next typing rule:

[pc] F Alpc] - B 1
[pc] H A; B 12)
Proposed rules constitues a security-type system which de-
scribes what security type must be assigned to a list of actions.
This list of actions is formed by a controller in response to a
packet incoming from the switch. The packet itself specifies the
first action in the list called packet processing context. If the
whole list is typable using proposed security-type system then
the list ensures non-interference between flows of different
security levels and some level of integrity which states that low
security flows can not be a reason for dropping high security
packets.

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

III. EXAMPLE APPLICATION OF THE MODEL

We consider a learning switch application as an example.
The switches in the network initially have no flow entries
and forward incoming packets to the controller. The controller
examines each packet and stores in the internal database the
source address of the packet along with the port from where
it is received. The port and packet headers are forwared to the
controller as an OpenFlow packet in message. The next time
the switch receives the packet destined to the address that was
learned earlier, the controller can infer the port to which the
packet must be forwarded. If the port can not be determined
then the packet is flooded to all the switch ports.

Algorithm 1 Learning switch algorithm

. pkt < packet arrived to the controller
: port < from which port pkt received
. if find(src(pkt)) is null then
push (src(pkt), port)
end if
. fport « find(dst(pkt))
. if fport is null then
for all switch port ¢ other than port do
emit (src(pkt),dst(pkt)) x Output(s)
end for
. else
emit (src(pkt), dst(pkt))x Output(fport)
emit (dst(pkt), src(pkt))x Output(port)
. end if

—_ o e
RN

The simple algorithm for the learning switch is shown as
Algorithm 1. The input data for the algorithm is an incoming
packet pkt and the port port from which it has been received.
The controller maintains an internal database which can be im-
plemented as a hash which supports the following operations:

e push(address, port). The operation creates a mapping
between the address and the port in the internal
database.

e find(address). This is a query to the database which
returns port number associated with address and null
if there is no such an association;

There is a emit operator in our language which appends
the action to the list of instructions destined to the switch. The
list is sent to the switch when the algorithm is stopped. Then
we can analyze the list and find if it is secure or not.

The Algorithm 1 checks whether a mapping between a
source address of pkt and port exists and writes such an
association if not in lines 3-5. Then we try to find if we
have learned the port to which we can forward the packet pkt
(line 6). If no such a port exists then we flood the packet to
all ports except ingress port (lines 8—10). Otherwise, we emit
forwarding rules which set up a duplex channel between source
and destination hosts of the packet (lines 12—-13). We assume
that entries responsible for flooding packets are eventually will
be evicted from switches and replaced by direct forwarding
entries.

Recall a network from Fig. 1. Assume that the controller
database is empty and there is no forwarding rules at switches,
so each switch sends a packet in message to the controller upon

280

a packet receipt. The security flaw arises even when the first
packet travels from any high security host. For example, if the
host 10.0.0.2 sends a packet pkt to the host 10.0.2.1, then the
following list of rules will be emitted by the controller to the
switch 1 according to the lines 8—10 of the Algorithm 1:

(10.0.0.2,10.0.2.1) x Output(1)
(10.0.0.2,10.0.2.1) x Output(3)
(10.0.0.2,10.0.2.1) x Output(4)

The first instruction installs the rule which forwards all
packets from high security host 10.0.0.2 to a low security host
10.0.0.1. Let us try to discover a security type of packet pkt
processing.

First, by the rule 2 we can infer that

10.0.0.2 : high
F forall({10.0.0.2}) : high

Since src(pkt) = {10.0.0.2} using rule 4 the following

holds
F forall({10.0.0.2}) : high
[high] & pkt
Next, we should discover the type of the action

(10.0.0.2,10.0.2.1) x Owutput(l). Let us denote as
match = (10.0.0.2,10.0.2.1), src(match) = {10.0.0.2},
dst(match) = {10.0.2.1} and the portset = {10.0.0.1}.
Thus,

b exists(src(match)) : high

but
t/ exists(portset) : high

t forall({10.0.0.2}) : low

so the premises for the rule 5 does not hold.

Likewise,
 ¥(sre(match)) : low

hence we can not infer the only premise for the rule 6. Thus,
the considered action can not be typed, so the whole list can
not be typed.

The Algorithm 2 proposes an enhanced version of the
learning switch. This version is free from many security leaks
but let us analyze it formally. The algorithms breaks into two
parts. The first one is represented by lines 8—19 where packets
from low sources are processed. If the output port can not
be identified, then the packet is flooded to all ports of the
switch (lines 9-11), otherwise forwarding rules are installed
to the switch. This rules include one which redirects packet
pkt to the destination host (line 13 and the other which either
creates a channel with the opposite direction (line 15) or set
the action to Drop if the opposite forwarding rule forms a
route from high host to low host (line 17). The second part of
the algorithm process packets from high sources (lines 21-31).
If the destination for such a high packet is a low host, then
we drop the packet (line 22). If the controller does not find

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

Algorithm 2 Secure learning switch algorithm

1: pkt < packet arrived to the controller
2: port <— from which port pkt received
3: if find(src(pkt)) is null then
4: push(src(pkt), port)
5: end if
6: fport <find(dst(pkt))
7
8
9

. if src(pkt):low then
if fport is null then
for all switch port ¢ other than port do

10: emit (src(pkt), dst(pkt))x Output(z)
11: end for

12: else

13: (src(pkt), dst(pkt))x Output(fport)
14: if (dst(pkt):low) then

15: emit (dst(pkt), src(pkt))x Output(port)
16: else

17: emit (dst(pkt), src(pkt))xDrop

18: end if

19: end if

20: else

21: if dst(pkt):low then
22: emit (src(pkt), dst(pkt))xDrop

23: else

24: if fport is null then

25: for all switch port ¢ other than port and exists(i) :
high do

26: emit (src(pkt), dst(pkt))x Output(s)

27: end for

28: else

29: emit (src(pkt), dst(pkt))x Output(fport)

30: emit (dst(pkt), src(pkt))xOutput(port)

31: end if

32: end if

33: end if

the port to forward the packet, then the packet is flooded but
only to high ports (lines 25-27), otherwise forwarding rules
are installed (lines 29-30).

Let us show how security properties of the Algorithm 2 can
be proved. If condition at the line 8 is true then the following
holds for lines 8-19 by the rule 1:

{src(pkt) : low}
F forall(sre(pkt)) : low

And by the rule 4:

F forall(sre(pkt)) : low
[low] - pkt

Assume fport is null, then the packet must be flooded
to all ports except port (lines 9—11). So, the controller emits
packet out messages which can be typed using inference rule 6:

F forall(src(pkt)) : low
[low] b (sre(pkt), dst(pkt)) x Output(i)

Applying rule 12:

281

[low] F pkt [low] & (sre(pkt), dst(pkt)) x Output(i)
[low] = pkt; (sre(pkt), dst(pkt)) x Output(i)

Thus, the whole list of emitted actions is typed and these
actions are safe.

Assume fport is not null, then controller emits action at
the line 13 which is safety can be ensured using the same
inference as in flooding case above. The second action of the
list depends on security type of dst(pkt). If it is low, then the
action at the line 15 is emitted. The security type of the action
is the following:

match = (dst(pkt), src(pkt))
{sre(match) : low}
F forall(src(match)) : low

forall(sre(match)) : low
F [low] - (sre(pkt), dst(pkt)) x Output(port)

(rule 1)

(rule 6)

Thus, the security type of all emitted actions agree, so the
whole list can be typed as low. If dst(pkt) is high (line 17)
then only the following can be inferred:

match = (dst(pkt), src(pkt))
{src(match) : high}
F forall(sre(match)) : high
F forall(src(match)) : high
[high] - match x Drop

(rule 2)

(rule 7)

This means that the security type of the Drop action from
the line 17 does not agree with the security type of previous
actions and packet processing context which are low. Thus, the
Drop action can not be considered safe. Indeed, low packets
must not trigger dropping packets originated from high security
hosts. If we carefully examine the code, we will see that such
a drop is made at line 22 when the packet processing context
is high. Hence, we can remove line 17 from our algorithm
without harming learning switch functionality.

If the packet pkt is originated from a high security host
then the Algorithm 2 proceeds to lines 21-31. The packet
processing context is now high:

{src(pkt) : high}
F forall(src(pkt)) : high

F forall(sre(pkt)) : high
[high] - pkt

(rule 2)

(rule 4)

Then three possibilities can occur:
1) Either a Drop action is emitted (line 22):
match = (sre(pkt), dst(pkt))

F forall(sre(match)) : high

le 7
[high] F match x Drop (rule 7)

PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

2) Or packet is flooded using a list of Qutput actions
(lines 25-27):

b exists(i) : high (condition in line 25)
match = (src(pkt), dst(pkt))

since condition in line 21 does not hold
{dst(match) : high}
b exists(dst(match)) : high
so using the rule 5 we can obtain

b exists(dst(match)) : high © exists(i) : high
[high] F match x Output (i)

3) Or bidirectional forwarding is set (lines 29-30).
Since both src(pkt):high and dst(pkt):high and it
was learned that such packets are came from ports
port and fport respectively, we can conclude that
exists(port) : high and exists(fport) : high.
Using inference similar to the previous case we can
obtain that both Output actions are typed as [high).

Thus, in all three cases all emitted actions are typed as high.
This agrees with the packet processing context and we can
conclude that the whole list of emitted actions must be typed
as [high|. That is the list is safe.

We have considered all the cases and all lists of actions
the controller can install to a switch. We have found a case
where a packet from a low security flow can trigger dropping
packet from a high security flow. This shows that the proposed
approach can find very subtle security discrepancies. In the
context of our application this can not be considered as a
security flaw, but it can lead to security leaks in more general
settings.

IV. CONCLUSION

Security of software-defined networks is challenging. There
is a lack of formal models for making security analysis
for software-defined networks and the paper proposes such
an approach which is based on formal security-type system.
This system ensures that the controller application does not
violate security properties such as confidentiality and, at some
extent, integrity. The security system can be implemented as a
software module of the controller and check security properties
online.

There is more to explore in this direction. There are both
theoretic and practical challenges. It is interesting to explore
soundness and completness of proposed type system. Another
fascinating problem is to combine security-type systems for
programming languages and the proposed one for achieving
a solid theoretical basis for static security analysis which can
prove properties of an SDN controller at the compilation stage.

ACKNOWLEDGMENT

The authors would like to appreciate the Russian Fund for
Basic Research (RFBR) for partial support under project 14-
01-31539.

282

The research was conducted at P.G. Demidov Yaroslavl
State University using financial support of the Ministry of Ed-
ucation and Science of the Russian Federation under contract
ID RFMEFI57414X0036.

REFERENCES

[1] A. Sabelfeld, A.C. Myers, "Language-Based Information-Flow Security”,
IEEE Journal on Selected Areas in Communications, vol. 21, 2003,
pp. 5-19.

[2] R. Smeliansky, "SDN for Network Security”, Proc. of Int. Conf. ”Modern
Networking Technologies (MoNeTec), Moscow, Russia, 2014, pp. 155—
159.

[3] M. Casado, N. Foster, A. Guha, ”Abstractions for Software-Defined
Networks”, Communications of the ACM, vol. 57, No 10, 2014, pp. 86—
95.

[4] S. Gutz, A. Story, C. Schlesinger, N. Foster, ”Splendid Isolation: A
Slice Abstraction for Software-Defined Networks”, ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking (HotSDN) ,
Helsinki, Finland, August, 2012, pp. 79-84.

[5] R. Sherwood et al. ”Carving Research Slices Out of Your Production
Networks with OpenFlow”, ACM SIGCOMM Computer Communication
Review, vol. 40, No 1, 2010, pp. 129-130.

[6] N. Foster, M.J. Freedman, Ch. Monasanto, J. Rexford, A. Story, D.
Walker, “Frenetic: A Network Programming Language” ACM Int. Conf.
on Functional Programming, Japan, 2011, pp. 279-291.

[7]1 C.J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C.
Schlesinger, D. Walker NetKAT: Semantic Foundations for Networks,
Proc. of ACM Symp. on Principles of Programming Languages, 2014,
pp. 113-126.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, "OpenFlow: Enabling Innovation
in Campus Networks”, SIGCOMM Computer Communications Review,
Vol. 38, No 2, 2008, pp. 69-74.

[9] OpenFlow Switch Specification V. 1.4.07, Open
Networking Foundation, 2013, 205 p- URL:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf, Last

accessed: 05.03.2015.

[10] E. Al-Shaer, S. Al-Haj, “FlowChecker: Configuration analysis and ver-
ification of federated OpenFlow infrastructures”, In Proc. of SafeConfig,
2010, pp. 37-44.

[11] M. Casado, M.J. Freedman, J. Pettit, J. Luo, N. McKeown, S. Shenker,
“Ethane: Taking control of the enterprise”, Proc. of SIGCOMM, 2007.

[12] Hong, C-Y, Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri,
M. and Wattenhofer, R. Achieving high utilization with software-driven
WAN. In Proceedings of SIGCOMM, 2013.

[13] Danfeng Zhang, Owen Arden, Jed Liu, K. Vikram, S. Chong, A. Myers,
”Jif: Java+Information flow”, http://www.cs.cornell.edu/jit/

[14] E.Ju. Antoshina, A.N. Barakova, E.S. Nikitin, D. Ju. Chalyy, A
translator with a security static analysis feature of an information flow
for a simple programming language”, Automatic Control and Computer
Sciences, Vol. 48, No 7, 2014, pp. 589-593.

[15] D. Zhang, Y. Wang, G. Edward Suh, A.C. Myers, A hardware design
language for Timing-Sensitive Information-Flow Security”, Proc. of the
20th Int. Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOSI5), 2015.

[16] D. Hedin, A. Birgisson, L. Bello, A. Sabelfeld, "JSFlow: Tracking
Information Flow in JavaScript and its APIs”, Proc. of the 29th Annual
ACM Symposium on Applied Computing, 2014, pp. 1663-1671.

[17] O. Arden, M.D. George, J. Liu, K. Vikram, A. Askarov, A.C. Myers,
”Sharing Mobile Code Securely With Information Flow Control”, IEEE
Symp. on Security and Privacy (SP), 2012, pp. 191-205.

[18] A. Cheung, S. Madden, A. Solar-Lezama, O. Arden, A.C. Myers,
”Using Program Analysis to Improve Database Applications”, IEEE Data
Eng. Bull., Vol. 37, No 1, 2014, pp. 48-59.

