
Presenting Risks Introduced by Android Application
Permissions in a User-friendly Way

Juraj Varga, Peter Muska
Slovak University of Technology in Bratislava, Slovakia

juraj.varga@stuba.sk, xmuskap1@stuba.sk

Abstract—The emergence of Android as a leading Operating
System in terms of market coverage induced the rapid emergence
of many mobile applications. A lot of these applications are
prone to misuse because of their design. This paper deals with a
new method of informing user whether applications installed on
his device are potentially harmful or not. The introductory part
provides some insight into security mechanisms used in Android.
The main part deals with research we based our work on, pro-
posal of our own methodology based on permission model and
its implementation in application for real-time offline analysis of
installed applications on device running Android. The last part
of this paper deals with the evaluation of achievements reached
by our methodology implemented in standalone application.

I. INTRODUCTION

Operating system Android is currently the most
widespread operating system (OS) for mobile phones, tablets
and other devices [1]. Its development began in 2003 in
Android Inc. The first phone with Android was released by
HTC in 2008 in USA and reached central Europe in summer
2009. Android is operating system built on Linux architecture.
Due to the fact that mobile devices have limited hardware
resources, this architecture had to be modified to fit this
situation. Securing an open platform requires robust security
architecture and precisely designed security system. Even
though it is possible to provide security at the application level
(by means of cryptography or steganography [2], [3]), this
does not provide protection against the security leaks at the
level of operating system modules. But multi-layer architec-
ture of Android provides necessary flexibility in development
and also certain level of protection. Security measures were
designed with regard to developer community - experts can
easily work with these mechanisms, beginners are protected
by default settings. Despite these measures, there are ways
to circumvent them. One of them is misusing overprivileged
applications. In this paper we propose a new approach in
detecting these applications and presenting the results to the
user.

The following part of this paper deals with the overview of
the permission model and its connection to Android security.
The third part presents prior research in this field, which we

used as a reference starting point in our work. Next two parts
describe our method of detecting overprivileged applications
and tests conducted with proof-of-concept application respec-
tively. This paper is concluded in the sixth part.

II. PERMISSION MODEL

From the beginning, OS Android is being developed as
an open mobile platform. It enables applications to use built-
in hardware and software along with both local and remote
data to grant users desired comfort and functionality. Along
with all this the OS must provide means to secure user data,
applications and whole device.

On the OS level Android provides security of Linux ker-
nel, along with secure inter-process communication between
applications running in different processes. These security
features on OS level make sure that even native applications
are subjected to application sandboxing. This way system pre-
vents harmful applications from damaging other applications,
device or OS itself [4] .

Applications run in application sandbox and have access
to limited system resources. System manages application
access to resources. These restrictions are implemented by
various means. Some possibilities are restricted by lack of
corresponding Application Programming Interfaces (APIs),
others by e.g. role separation. Sensitive APIs can only be
used by trusted applications and are protected by permission
system. Permissions are divided into four groups based on
level of protection (for illustration see Figure 1):

• Normal: permissions on the application level, they
do not pose a serious risk when they are used by the
application.

• Dangerous: permissions which can cause leaks and
manipulation with sensitive data or exploit poten-
tially dangerous system resources. They need to be
explicitly confirmed by user during installation of
application. Here belong for example:
◦ Location data from GPS (AC-

CESS FINE LOCATION).

_______________________________________________________PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



◦ Network/data connection (AC-
CESS NETWORK STATE).

◦ Telephony (CALL PHONE).
◦ SMS/MMS functions (WRITE SMS).
◦ Access to system configuration

(CHANGE CONFIGURATION).

• Signature: permissions assignable only to applica-
tions signed with private key corresponding with
certificate of application calling it. They are used by
developers to share information among their applica-
tions.

• Signature-or-system: special type of permission
assignable only to applications installed in system
image which are signed with the same certificate as
system image [5] [6].

Aside from the above mentioned division, permissions are
also divided by the way of accepting them:

• Time-of-use: user must confirm this permission when
executing sensitive operation (e.g. access to device
location). It is the only way to prevent applications
to access device resources.

• Install-time: accepted when installing application,
user accepts them as one; he cannot choose which
permissions to accept and which to deny, see Figure
2.

System resources marked as dangerous are accessible only
from the OS. Applications must have these requirements
specified by permissions in manifest. During installation these
permissions are displayed to user and he can accept or reject
them. After accepting these permissions the installation con-
tinues and these permissions are accepted by the system. It is
not possible to choose which permissions to accept, they must
be accepted as one and that can lead to security incidents. Per-
missions are assigned to an application for the whole time it is
installed on the device and cannot be manipulated by anyone.
They are removed in the moment the application is deleted
from the device. They can be revised in application settings
and can be restricted by shutting down global functionality,
such as Wi-Fi or GPS. If the application is trying to access a
feature that is not allowed to, it invokes a security exception
and error message in the application. Security checks for
protected API permissions are done on the lowest possible
level to prevent their circumventing. Some device capabilities
are not accessible to third-party applications but can be used
by pre-installed applications. The complete list of permissions
is available on website dedicated to Android development [5]
[6]. Other mobile platforms also use security mechanisms
based on permissions, e.g. iOS by Apple [8], but their usage
is different.

Fig. 1. Android Permission Model

III.PRIOR RESEARCH

Since the introduction of the permission model as a part of
Android security, there has been an active research in various
aspects of this model.

A. System of permissions

The basic research is focused on how this system works.
This means dealing with detection of overprivileged appli-
cations and applying restrictions on installed applications or
during their installation.

_______________________________________________________PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-------------------------------------------------------------------------------------------------------------------------------------------------------- 203



Fig. 2. Example of Application Installation [7]

1) Detecting overprivileged applications

This topic is closely tied with privilege escalation attacks
and is considered to be the first step in enhancing security in
Android OS. There are systems that can detect overprivilege
in applications, e.g. Stowaway [13]. This type of applications
provides information whether the assigned permissions are
used to access system resources or not, and if this access is
relevant to functions required of the applications.

2) Applying restrictions

Important part of research on Android platform deals with
restricting access to system resources. As was mentioned
in part II, the user either allows application access to all
required resources and installs it, or does not install it at all.
Current research deals with two sub problems here: applying
restrictions and tracking the data flow and access to resources

when they are allowed. The first framework to implement
restrictions in the permission model was APEX [15], which
allowed to revoke permissions and allow them when neces-
sary. Unfortunately, this project is no longer active, but its
idea continued in various custom ROMs like CyanogenMod
or in frameworks like AppOps. Project Pyandrazzi [21] also
continues in this idea, but focuses more on the impact of these
restrictions on application functionality. Then there is Blue
Seal [22], which tracks the data flow and access to resources
in monitored applications. Moreover, it provides the details
to the user and can rather successfully identify samples of
mobile malware.

B. Privilege escalations

The most severe problem of the permission model is a fact
that developers assign more permissions to their applications
than they need to work properly. For example calculator
application does not need access to the Internet to work,
but uses it to download commercial banners which are main
sources of income for developers. However, they can pose
a security risk [12]. If the application has been assigned
more permissions than it actually uses, it can be misused
for privilege escalation attack [18]. Essentially, it means that
an application with more permissions than it needs can be
used by some malware application to do operations which this
malware cannot do alone. These are the most common types
of attacks on Android platform, and they are often caused
by the lack of best practices for secure development among
developers. Bugiel et. al. in [19] presented a framework
XManDroid capable of detecting and preventing these attacks.
This framework was later improved to cover more possible
sub types of this attack [20].

C. Methods of malware detection using permissions

Permission model can be also used as a mean of mobile
malware detection. However, in most cases they are only
used as an additional factor in determination of application
harmfulness.

1) ScanDroid

One of the first usable applications is ScanDroid by
Fuchs et. al. [11]. The authors focus on statistical analysis of
data stream going through various applications. In addition
Scandroid analyses permissions for each application stored in
the manifest file. Based on these results and knowledge of
permissions it can determine if it handles the data correctly
or not, and therefore determine whether it is harmful or not.
The application is then marked and presented to the user as
potential risk.

_______________________________________________________PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-------------------------------------------------------------------------------------------------------------------------------------------------------- 204



2) Kirin

Kirin was also one of the first detection methods [16]. This
system uses certification of applications during installation. It
reads a list of required permissions from the manifest file and
evaluates this configuration according to the set of security
rules. Currently, this system is ineffective against new threats,
but there are several new detection methods it inspired [20].

3) K-Mean Clustering

The latest method of malware detection based purely on
permission model was presented in [17]. The authors extract
features from .apk files and containing permission requests.
On these features they apply Information Gain feature se-
lection method and K-mean clustering algorithm supported
by machine learning and decision trees. This work reached
promising results, but further improvements are needed to
determine whether this approach is successful or not.

D. User recognition and comprehension of permission model

The only research in this area so far was conducted by
Felt et. al. in [7]. Results show, that complexity of permission
model in regard to common user is a significant problem.
Survey conducted by the authors shows that:

• Only 42% of users is aware of which permissions
application requires and know what are they for.

• Almost 70% of users is influenced by reviews into
installing some application.

• On the average only 30% of users can correctly
tell what operations can application do with specific
permissions.

Based on these results we can say, that society is still not
educated enough in this matter and therefore our research can
provide some improvement in this regard.

IV.DESIGN

A. State-of-the-art

On Google Play there are currently many applications
dealing with permission management. However, the majority
of these applications is of informative character. For example
applications like [23], [24] or [25] show the user which
permissions chosen application uses and provide general
information about these permissions. The more advanced ones
like [23] and [25] can divide installed applications to lists
depending on potential harm they can do, but these divisions
are based only on general recommendations of Android API
documentation found in [4]. Moreover, these applications
do not quantify the risk presented by installed applications.

Then there are applications capable of changing permissions,
like [26]. This application can remove permissions from
application manifest file and thus removing the need for this
permission. However, this approach does not change the API
calls in the application install file and when such method is
used, the application crashes. Also, many other studies linking
permissions and malware were conducted over past years.
The most significant ones were [9], [10], [14]. Apart from
other research authors tried to find some connection between
malware and permissions it requires. Authors in these papers
conclude that mobile malware is nowadays almost identical
to benign applications regarding required permissions. This
is a direct result of overprivileging during the development
process. Current permission model does not offer sufficient
granularity in dividing permissions into functional groups
- Signature and Signature-or-system cannot be accessed by
potentially malicious application, Normal group is not inter-
esting, so we are left with only one group - Dangerous. Above
mentioned studies show, that this group of permissions is both
used in benign and malicious applications. Therefore it is
important that this category is further divided into smaller
subgroups. In this work we propose division into four groups
based on severity of possible misuse of given permission
in overprivileged application, based on above mentioned re-
search in this area:

• RED - high to critical risk - these permissions can
only be used by a selected group of applications with
legitimate claim to use them.

• ORANGE - moderate risk - these permissions should
be used only by specific application, which requires
them to function correctly.

• YELLOW - slight risk - these could be assigned to
the GREEN group, but in some cases of application
types could be misused.

• GREEN - little to no risk - typical, commonly re-
quired permissions which are safe, if they are not in
combination with some other permissions.

Since this research intends to raise awareness among
common users, it is vital that these groups immediately reflect
potential threat to user. That is why we decided to use color
distinction - the final score of each application is shown as a
progress bar of some color depending on the potential threat
level.

It may not be suitable to evaluate permissions based on
some global view, because there are permissions which are
necessary for one type of application and prone to misuse for
other type. Fine example is SEND SMS, allowing sending
SMS messages - it is typical for messengers but very suspi-
cious for games. That is why we we decided to also divide
applications into logical groups e.g.:

_______________________________________________________PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-------------------------------------------------------------------------------------------------------------------------------------------------------- 205



• GAMES,

• SOCIAL MEDIA,

• MESSENGERS,

• FINANCIAL.

Each of these categories has a set of permissions which are
(according to our observations) necessary for them to be fully
functional. On the other hand, there is a set of permissions
the application should not use at all. These lists were created
based on general expectations of what permissions the appli-
cations from specific group should require. Furthermore, we
included in these lists permissions which are often misused
my malicious applications as described in [9], [10], [14]
or we deem them suspicious. These permissions would be
treated differently in calculation of the final score - either
their score will be lowered (if they are required) or raised
(if they are suspicious). We believe this addition would make
greater impact on the final score than the permissions alone
and provide greater precision in final results.

B. Analysis and Evaluation

Proposed method consists of two parts. The first part cal-
culates the risk based on permissions the application requires.
These permissions are distributed to the coloured groups
based on the overall risk they pose (part IV. A). The second
part consists of risk calculation based on the same permission
list, only evaluated according to the category which the tested
application belongs to. For example, INTERNET permission
is required for some messenger or communication application,
but suspicious for some utility application (calculator).

The evaluation of application is based on calculation of
negative score, the higher the score, the higher the overall
threat posed by the application. The evaluation model consists
of two components. Each of these components uses evaluation
function: general permission risk and category based permis-
sion risk.

The first component of evaluation R1 is based on in-
crementing risk score according to the number of required
permissions belonging to one of the four coloured groups (1).
In our simplified model used to demonstrate the overall per-
formance we use experimental values: green group increments
score by 0.5, yellow by 1, orange by 3 and red by 5 points.
When this is done, we get a sum of these values. Then we
compute a ratio of achieved score with maximal possible score
for this application (as if all permissions were from the RED
group). This result is then multiplied by 100 to get a value in
percentage. This calculation can be represented as:

R1 =
g · kg + y · ky +o · ko + r · kr

(g+ y+o+ r) · kr
·100, (1)

where g, y, o, r - total number of permissions from GREEN,
YELLOW, ORANGE and RED groups,
kg, ky, ko, kr - coefficient of risk for permissions from each
group.

The second component begins its evaluation after the
first phase of analysis is done. Score is reset to zero. Re-
quired permissions are checked again, this time using the
list of permissions for chosen application type (2). For any
suspicious permission found, the score is incremented by a
predefined value set experimentally according to the category.
Then we calculate the ratio of the reached score and the
maximal possible score obtained for the given category (if
all permissions found would be in the list of suspicious
permissions for given category). This ratio is again multiplied
by 100 to get a value in percentage. This calculation of risk
R2 can be represented by equation:

R2 =
pc

p · kc
·100, (2)

where p - total number of permissions,
pc - number of suspicious permissions for current category,
kc - coefficient of risk for permissions from this category.

After both parts of our evaluation method are complete,
the final score of analysed application based on the required
permissions is calculated. The final score is calculated as a
sum of partial scores (3). This result represents potential risk
R of misuse of selected application:

R = R1 +R2, (3)

where R - final score,
R1 - score from the first part,
R2 - score from the second part.

We remark that high score does not immediately mean
a malicious application. The score is just a security recom-
mendation and a mean of prevention against an overprivileged
application (and only consequently a possible malware threat).

C. Proof-of-concept application

We implemented proposed scoring method as a standard
Android application written in Java language. Application
Suspicious Apps Checker is very simple and consists of
several connected screens - activities.

After the application starts, it shows the user a list of
all user-installed applications on the current device. We filter
system applications and those from the device manufacturer,
because they should not pose any threat. Each item from
this list contains application title and an icon for better
orientation and user experience. Each item is also linked

_______________________________________________________PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-------------------------------------------------------------------------------------------------------------------------------------------------------- 206



with two buttons: one for launching and one for further
information. Clicking the second button launches the App Info
activity. Here the user can see all information regarding this
application: current version, package info, date of the last
update and all required permissions. These permissions can
be clicked on and the user is shown the information about the
desired permission - Figure 3.

Fig. 3. Clickable List Showing Information About Required Permissions

Besides these information there is an Analysis button
which calls the above mentioned analysis and evaluation.
It is necessary to choose the type of application (examples
mentioned in IV. A), as it can significantly alter the results if
chosen inaccurately. If the user does not choose the category,
the analysis will be performed on default Games choice (as a
least privileged category).

The result is shown on the next screen with the coloured
progress bar and the suspicious permissions are listed as click-
able list (as in Figure 4), where the user can see what possible
damage the application with the given permissions can do (see
Figure 3).

V. TESTS AND RESULTS

Implemented application Suspicious Apps Checker is fully
functional according to the specifics in design. It does not
require any permissions, therefore we can consider it secure.
Tests were conducted in two steps:

• Testing of applications based on categories.

• Testing of individual applications.

Fig. 4. Evaluation Result

A. Testing of applications based on categories

For each category we tested 20 most downloaded free
applications in Google Play store (280 applications in total).
In the Table I we can see the average result in each category.
It also contains average values in these aspects:

• Overall ratio of how much is a specific category
overprivileged.

• Number of permissions that should not be assigned
for each category.

• Number of required permissions for each category.

_______________________________________________________PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-------------------------------------------------------------------------------------------------------------------------------------------------------- 207



TABLE I. RESULTS FROM THE FIRST ROUND OF TESTING

Category Avg. risk (%) Avg. # of perms Avg. # of susp. perms
Sports 15.27 6.86 0.29
Health 21.18 7.29 0.57
Games 22.14 6.72 0.72
Travel 23.05 6.00 0.14
Lifestyle 23.11 6.00 1.00
Multimedia 23.19 6.20 0.80
Entertainment 23.43 8.00 0.50
Social 25.96 16.25 0.50
Tools 26.47 16.00 1.40
Communication 26.85 23.43 0.86
Shopping 27.77 8.00 1.67
Productivity 30.01 8.40 1.40
Themes 32.33 4.00 1.00
Finance 37.21 8.17 0.83

Based on these results we can say that the applications
from the Sports category present the lowest potential risk with
the score of 15,27%. On the other hand the highest risk of
overprivilege present applications from the Finances category
with the score of 37,21%. The Communications category
ranks first as a category with the most required permissions
with 23,43, which is not very surprising due to their pur-
pose. The last category in this view is Themes with 4. The
highest number of suspicious permissions require applications
from Shopping with 1,67, which indicates possible case of
overprivileged application. The lowest number of suspicious
permissions required applications from Travel group, only
0,14.

B. Testing of individual applications

In case of individual applications the best results obviously
achieved applications that does not require any permissions,
thus our application labelled them secure with zero risk of
misuse. However, the highest positions of potential risk were
achieved by anti virus applications. This happened due to
the fact that these applications require significant amount
of permissions to access various system resources needed
to perform security scans on the device. The second highly
risky group are financial applications. Since they need to
work with account numbers, passwords and other sensitive
data, they also require permissions belonging to the most
dangerous group - this is why our application evaluated them
as suspicious. In the Table II is a list of applications that
reached the highest values of potential misuse as overprivi-
leged applications.

As we mentioned in the previous section, the values
used in evaluation equations were experimentally set for
demonstration purpose. In our proof-of-concept testing we did
not test our proposed method on actual malicious applications.
According to previously conducted research [9], [10], [14], we
believe, that malicious applications hiding behind legitimate
functionality would obtain very similar results as benign
applications. We plan to conduct these tests as a part of our

TABLE II. RESULTS FROM THE SECOND ROUND OF TESTING

App Category Risk Perms Susp. perms
mBankSk Finance 59.75 8 1
Volley Hangout Games 51.15 18 4
Steves World Games 48.82 16 4
Swap The Box Games 48.82 16 0
Mobile Security Antivirus Tools 48.57 32 4
Heureka Shopping 46.67 6 2
Sleep as Android Lifestyle 46.52 22 6
Orange Go Productivity 45.56 9 2
Smart Banking Finance 45.29 12 2
TB VIAMO Finance 40.91 9 2
Telekom Productivity 38.75 6 2
Lokator Finance 35.71 7 0
Skype Communication 35.09 30 1
iTransit Travel 33.33 3 0
WhatsApp Communication 33.29 31 1
Snapchat Social 33.13 14 1
Sports Tracker Health 32.92 11 1
AVG Antivirus Tools 32.88 44 4
Go Weather Forecast Themes 32 4 1
CM Security Tools 31.54 19 3

future research.

VI.CONCLUSION

In comparison with existing solutions for detection of
overprivileged applications based on permission model, our
new method appears to be a better solution. It combines suit-
able parts from the existing work and tries to expand them and
make them more precise. A standard approach only informs
the user about required permissions. Our approach adds a
quantitative expression of the potential risk. Moreover, the
risk is based on intuitive division of permissions according to
the risk category (based on existing research) and application
category as well (proposed method). Unlike other solutions,
our approach does not need any permissions or root access to
work properly.

Results we achieved in this work significantly depend
on created rules in the proposed analysis methodology. This
process was based on subjective view, which is shown in
results. The achieved results can be different, if other pa-
rameters are used in the scoring methodology - including
acceptance thresholds, different compositions of the lists of
permissions, different evaluation functions etc. The existing
parameters inform the user of potential over-privilege, and
require his active participation in detecting potential malware.
Further research in this area is required to optimize the various
parametric settings, before the method is suitable for a more
automated over-privilege, and potential malware, detection.

The proof-of-concept application Suspicious Apps Checker
is being further developed and tested, therefore is not pub-
lished for public use. However, researchers keen on contribut-
ing to this project could receive install file upon request by
mail.

_______________________________________________________PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-------------------------------------------------------------------------------------------------------------------------------------------------------- 208



ACKNOWLEDGEMENT

This work was supported by grant VEGA 1/0173/13. The
authors are grateful to anonymous reviewers for their helpful
comments and remarks that helped to improve the quality of
this paper.

REFERENCES

[1] Android and iOS Continue to Dominate the Worldwide
Smartphone Market with Android Shipments Just Shy
of 800 Million in 2013, According to IDC, Web:
http://www.idc.com/getdoc.jsp?containerId=prUS24676414

[2] M. Jokay: The Design of a Steganographic System Based on the
Internal MP4 File Structures. International Journal of Computers and
Communications. - ISSN 2074-1294. - Vol. 5, Iss. 4 (2012), pp. 207-214

[3] M. Jokay and M. Kosdy: Steganographic File System Based on JPEG
Files. Tatra Mountains Mathematical Publications. - ISSN 1210-3195.
- Vol. 57, Iss. 4 (2013), pp. 65-84.

[4] Android Security Overview, Web: http://source.android.com/tech/
security/index.html

[5] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici and S. Dolev: Google
Android: A Comprehensive Security Assessment. In Security & Pri-
vacy, IEEE, Volume: 8 Issue: 2, 2010, pp. 35 - 44.

[6] Android Permissions Overview, Web:
http://developer.android.com/reference/android/Manifest.permission.html

[7] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin and D. Wagner:
Android Permissions: User Attention, Comprehension, and Behavior,
In Symposium on Usable Privacy and Security (SOUPS) 2012, 2012,
14 pp.

[8] E. Antal and F. Baranec: Techniques of obtaining sensitive data from
Apple iOS devices. (In Slovak) In 43. konference EurOpen.CZ :
Vranov, Czech Republik; ISBN 978-80-86583-26-6 29. 9.-2.10.2013.
Plze: EurOpen.CZ, 2013, pp. 21 - 32.

[9] Y. Zhou and X. Jiang: Dissecting Android Malware: Characterization
and Evolution, In Proceedings of the 33rd IEEE Symposium on Security
and Privacy (Oakland 2012), 2012, 15 pp.

[10] W. Enck: Defending Users Against Smartphone Apps: Techniques and
Future Directions, In ICISS’11 Proceedings of the 7th international
conference on Information Systems Security, 2011, pp. 49 - 70

[11] A. P. Fuchs, A. Chaudhuri, and J. S. Foster: SCanDroid: Automated
Security Certification of Android Applications, In Technical Reports
of the Computer Science Department, 2009, 15 pp.

[12] M. C. Grace, W. Zhou, X. Jiang and A.-R. Sadeghi,: Unsafe exposure
analysis of mobile in-app advertisements, In WISEC ’12 Proceedings
of the fifth ACM conference on Security and Privacy in Wireless and
Mobile Networks, 2012, pp. 101 - 112

[13] A. P. Felt, D. Song, D. Wagner and S. Hanna: Android Permissions
Demystified, In CCS11, 2011, 11 pp.

[14] A. P. Felt, M. Finifter, E. Chin and D. Wagner: A Survey of Mobile
Malware in the Wild, In SPSM11, 2011, 12 pp.

[15] M. Nauman,S. Khan and X. Zhang: Apex: Extending Android Permis-
sion Model and Enforcement with User-defined Runtime Constraints,
In ASIACCS10, 2010, 5 pp.

[16] W. Enck, M. Ongtang and P. McDaniel: On Lightweight Mobile Phone
Application Certification, In CCS ’09 Proceedings of the 16th ACM
conference on Computer and communications security, 2009, pp. 235
- 245

[17] A. Zarni and Z. Win: Permission-Based Android Malware Detection,
In International Journal of Scientific & Technology Research, IJSTR,
Volume: 2 Issue: 3, 2013, 7 pp.

[18] L. Davi, A. Dimitrenko, A.-R. Sadeghi and M. Winandy: Privilege
Escalation Attacks on Android, In ISC’10 Proceedings of the 13th
international conference on Information security, 2010, pp. 346 - 360

[19] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer and A.-R. Sadeghi:
XManDroid: A New Android Evolution to Mitigate Privilege Esca-
lation Attacks, In Technical Report TR-2011-04, 2011, 18 pp.

[20] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi and B.
Shastry: Towards Taming Privilege-Escalation Attacks on Android,
In 19th Annual Network & Distributed System Security Symposium
(NDSS), 2012, 18 pp.

[21] K. Kennedy, E. Gustafson and H. Chen: Quantifying the Effects of
Removing Permissions from Android Applications, In IEEE Mobile
Security Technologies (MoST), 2013, 11 pp.

[22] S. Holavanalli, D. Manuel, V. Nanjundaswamy, B. Rosenberg, F. Shen,
S. Y. Ko and L. Ziarek: Flow Permissions for Android, In Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International Con-
ference on, 2013, 6 pp.

[23] F-Secure App Permissions, Web: https://play.google.com/store/apps/
details?id=com.fsecure.app.permissions.privacy

[24] S2 Permission Checker, Web: https://play.google.com/store/apps/
details?id=com.byte256.permissionchecker

[25] Permission Friendly Apps, Web: https://play.google.com/store/apps/
details?id=org.androidsoft.app.permission&hl=sk

[26] Adv Permission Manager, Web: https://play.google.com/store/apps/
details?id=com.gmail.heagoo.pmaster.pro

_______________________________________________________PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 209 ----------------------------------------------------------------------------




