
Design of Diary Applications for Vital Sign
Registration Targeted at Multiple Android

Application Stores

Ivan Shchitov, Eldar Mamedov, Ilya Paramonov
P.G. Demidov Yaroslavl State University

Yaroslavl, Russia
{ivan.shchitov, eldar.mamedov}@e-werest.org, ilya.paramonov@fruct.org

Abstract—The paper considers two aspects of expanding the
user base of mobile applications for vital sign registration: making
one application easily accessible from the others and targeting at
multiple application stores. We provide a special design solution
that allows to resolve these issues in a maintainable way.

I. PROBLEM DEFINITION

A. Diaries and aggregators for vital sign registration

Application stores contain many medical applications.
There are separate diaries, each for a particular vital sign, for
example Blood Pressure1, Weight Manager2, Heart Rate Mon-
itor3. There are also aggregators that allow to register several
vital signs in one applications, such as myFitnessCompanion4,
TactioHealth5, and Health-Tracker6.

Applications of the first category are highly specialized and
can be easily found by patients interested in registration of the
particular vital sign (e.g., blood pressure or glucose level), but
they help a little when the user needs to track several vital
signs. Aggregators allow to register multiple vital signs at once
but their functionality often is not so rich and a user who needs
to track only blood pressure can hardly find them.

In this paper we consider the problem of combining these
two approaches to employ benefits of the both. We achieve it
by providing several highly specialized applications that are
specifically interconnected that allows the user to treat them
as a single application.

B. Publishing in different application stores

There are many different Android application stores:
Google Play, Samsung Apps7, Amazon Mobile App Distri-
bution8, Opera Apps9, Nokia Store10 etc. Each store covers
its own user base making developers interested in bringing
their applications to many of them. Unfortunately applications

1https://play.google.com/store/apps/details?id=com.freshware.bloodpressure
2https://play.google.com/store/apps/details?id=weight.manager
3https://play.google.com/store/apps/details?id=com.heartrate.monitor
4https://play.google.com/store/apps/details?id=com.myfitnesscompanion
5https://play.google.com/store/apps/details?id=com.tactio.tactiohealth
6https://play.google.com/store/apps/details?id=com.benoved.phr lite
7http://http://apps.samsung.com
8http://www.amazon.com/mobile-apps/b?node=2350149011
9http://apps.opera.com
10http://store.ovi.com

targeted at one store are not suitable for other stores because
each of them has its own specific APIs and services, for
example, in-app purchases mechanism, advertising services,
etc.

Therefore, it would be beneficial for developers to design a
mechanism that allows to prepare the application binaries for
publication in different stores in accordance to requirements
of these stores.

II. COMPANION APPLICATIONS

A. Overview of companion applications

We consider our solution in a case study of three applica-
tions developed by EwerestMD LLC: Blood Pressure Diary11,
Weight Diary12 and Healthy Sleep Diary13.

Blood Pressure Diary is an application for tracking and
analyzing blood pressure measurements. It helps people that
suffer from various diseases of the blood circulatory system,
e.g., hypertension or hypotension. Weight Diary is an applica-
tion for tracking and analyzing body weight measurements.

These applications provide functionality of storage and
intelligent management of measurements: addition, displaying,
modification and deletion of measurements; statistic reports
on measurement including maximum, minimum and aver-
age for given time periods (morning, day, evening, night);
classification of blood pressure measurement based on the
WHO / ISH Hypertension guidelines [1]; import and export
of measurement data and relevant medical notes for physicians
and other medical systems.

Healthy Sleep Diary is a simpler application for tracking
sleep time. It motivates people to go to bed early with the
use of entering sleep time and tracking estimated and actual
sleep time. The application also provides capabilities of setting
the personal sleep norm, selecting a method for tracking sleep
time, etc.

We refer Blood Pressure Diary, Weight Diary, and Healthy
Sleep Diary as “companion applications” because they are
based on similar principles, have similar user interface, and
integrated to seem like a single application as it is shown in
the following subsection.

11https://play.google.com/store/apps/details?id=org.fruct.yar.bloodpressurediary
12https://play.google.com/store/apps/details?id=org.fruct.yar.weightdiary
13https://play.google.com/store/apps/details?id=org.fruct.yar.healthysleepdiary

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Fig. 1. Navigation drawer of the Blood Pressure Diary application

B. Access to companion applications from navigation drawer

In order to provide quick access to companion applications
to the user we employ activities of the Android platform.

An activity is an application component that interacts with
user. The activity is usually responsible for one function,
such as dialing the phone, taking a photo, sending an SMS,
or viewing a map. Activities in Android have a remarkable
feature: an activity can invoke another activity even if these
two activities belong to different applications. In our case, this
makes activities suitable for connecting several vital sign diary
applications into the whole.

For the user this connection looks as follows. Each appli-
cation has a navigation drawer—a panel that can be pulled-out
from the left edge of the screen and displays main navigation
options of the application. In the drawer each companion
application has its own item. For example, navigation drawer of
Blood Pressure Diary contains “Weight Diary” and “Healthy
Sleep Diary” items (see Fig. 1). When the user taps one of
these items the main activity of the corresponding companion
application gets started.

Usually when an activity is started from another activity,
both the activities are kept in the activity stack allowing to
return the former activity by pressing the “Back” button. But
in our case the starter activity is removed from the activity
stack to mimic working with a single application. The Android
navigation guidelines [2] state that “Back” button should return

to the previous screen but we treat them as the same screen
that provides access to different measurements.

If the companion application is not installed and the user
taps the corresponding item in the navigation drawer the
initial application proposes to install the ordered companion
application from an application store.

III. TARGETING AT MULTIPLE APPLICATION STORES

A. Differences between assemblies for different stores

Each particular application store imposes its own require-
ments on applications published in this store. For example,
the application can be restricted to use only specific APIs
for particular tasks (e.g., maps, advertisement, in-app purchase
and so on). Another example could be prohibition to reference
contents from stores other than one from which it has been
installed.

To meet these requirements developers need to separate as-
sembly of appliations that will have the following differences:

• different set of libraries;

• differences in the manifestos;

• differences in the code.

For example, in-app purchase mechanism of the Google
Play requires addition of the In-App Billing library to project,
billing permission to manifest, creation and use of the Iab-
Helper class instance. But in-app purchase mechanism of the
Samsung Apps requires addition of the Samsung IAP SDK
to project, billing, internet permissions and InboxActivity,
PaymentActivity, ItemActivity to manifest, creation and use
of SamsungIapHelper class instance.

Thus, we cannot use both libraries at the same time and
choose what activity should be started, as they are to be
registered in the same manifest. The solution is to make
separate application assembly for each store.

B. Project build types

To build our applications we use Gradle [3] and Android
plugin for Gradle [4]. It allows to solve the problem of separate
assemblies for different application stores in two ways: using
build types and flavors.

We prefer build types over flavors because for each
flavor at least two assemblies are created: “assem-
bleFlavorNameDebug” and “assembleFlavorNameRelease”.
But we do not need to create multiple debug assemblies for a
single application because the debug is not connected to any
specific application store. We would like to create a single
assembly for debugging and a several release assemblies for
different application stores. For this purpose build types are
more suitable.

For each build type we can create a separate package
with sources specific for each application store. It allows to
create different manifests and employ different classes and
constructions for different assemblies. At build time the source
code and resources of the build type are used in the following
way: the manifest from the folder of the corresponding build
type is merged into the application manifest, the sources acts

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 182

src

re leaseSamsung

re lease

main

debug

Sam sungPurchaseManagerAndroidManifest

GooglePurchaseManagerAndroidManifest

Com m on Sources FilesAndroidManifest

FakePurchaseManagerAndroidManifest

Fig. 2. The directory hierarchy of the project

as just another source folder, and the resources override the
main resources, replacing existing values.

For each build type, a new “assembleBuildTypeName” task
is created.

For each of our applications we have three build types:
“debug”, “release” and “releaseSamsung”. Therefore we have
“assembleDebug”, “assempleRelease”, and “assembleReleas-
eSamsung” tasks to debug application and to build binaries
for Google Play and Samsung Apps respectively.

For each build type we create package in location src/build
type name/ (see Figure 2). For “debug” build type it is “debug”
package, for “release” build type it is “release” package
and for “releaseSamsung” build type it is “releaseSamsung”
package. We placed different manifests, configuration files and
sources code to different packages. Thus, we can use different
implementations of different classes for different builds.

C. Unified interfaces for store-specific classes

We consider using the build types on the in-app purchase
mechanism implementation for two stores: Google Play and
Samsung Apps. They provide different classes for in-app
purchase operations. API for Google Play provides IabHelper
class, but API for Samsung Apps provides SamsungIapHelper
class. These classes have different implementations, depen-
dencies, and (the most important) different interfaces. That
is why we need to unify interface for these classes to avoid
fragmentation of the code base.

To resolve this issue we designed the abstract PurchaseM-
anager class shown in Figure 3. It has a constructor, where
we check whether the application is purchased or not, the
startPurchase() abstract method for starting purchase flow, and

PurchaseManager

Callbacks callbacks
Act ivity act ivity

PurcahseManager(Act ivity act ivity, Callbacks callbacks)
void startPurchase()
void handleAct ivityResult (int requestCode, int resultCode, Intent data)
void dispose()

Fig. 3. The interface of the abstract PurchaseManager class

the dispose() method for destroying of purchase helper class
instance. The callbacks object is used for handling the purchase
result in other parts of the application.

We created GooglePurchaseManager, SamsungPurchaseM-
anager and FakePurchaseManager classes that are inherited
from the PurchaseManager class. Constructors of subclasses
invoke constructor of the superclass and, if application has not
been purchased, create the purchase helper class instance (Iab-
Helper for Google Play and SamsungIapHelper for Samsung
Apps). FakePurchaseManager class is placed in the “debug”
package and needed for the debugging purposes, it does
not use any in-app purchase API. GooglePurchaseManager
and SamsungPurchaseManager are placed in “release” and
“releaseSamsung” packages accordingly.

To instantiate a proper PurchaseManager implementation
we define fully qualified name of the purchase manager class
in metadata of the manifest for each build type. In runtime we
extract the class name from the manifest and create the proper
object via reflection.

This solution can be easily extended to support more
specific APIs and application stores.

D. Navigation drawer configuration

Usually application stores prohibit using links to other
stores in applications published in these stores. It makes sense,
because the store can only be sure, that it services are installed
on the user’s phone, but it creates troubles when publishing
applications that contain links to other applications in their
interface.

In order to avoid changes in the code targeted at different
application stores we moved links control to a configuration
file. Configuration file is an XML file with one top-level
“apps” element containing several “app” elements. Each “app”
element contains attributes with following data regarding a
companion application: an id, an application name, a package
name, a description, an icon, a link to the application in the
store, a link to the web page devoted to the application in the
store.

Each assembly has its own version of the configuration
file, which has links to the application specific for a particular
application store. For example, the “release” assembly contains
the file with links to the application page in Google Play
Market, whereas the “releaseSamsung” assembly contains the
file with links to the application in the Samsung Apps store.

Such an approach is convenient for developers as it allows
to make changes in navigation drawer contents (e.g., to add
a new companion application) leaving the source code of the
application intact.

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 183

IV. CONCLUSION

In the paper we developed the concept of the “companion
application” and implemented it for three vital sign diary appli-
cations for Android platform. It simplifies finding appropriate
diary for vital sign registration for users and allows them
to extend their functionality by means of other diaries. For
developers such an approach allows to expand the user base.

Also we developed a mechanism that allows to substitute
implementation of functionality depending on the application
store at which the application is targeted.

All solutions described above are universal and can be
applied to many interconnected applications and many appli-
cation stores.

ACKNOWLEDGEMENTS

The authors would like to thank Sergey Balandin for his
initial idea of companion applications and subsequent fruitful

discussions on this topic.

This work was partially supported by grant No. 14-
01-31539 from the Russian Foundation for Basic Research
(RFBR).

REFERENCES

[1] Guidelines Subcommittee, “1999 World Health Organization—
International Society of Hypertension. Guidelines for the Management
of Hypertension,” in J. hypertension, 1999;17:151-183.

[2] Navigation with Back and Up: Android Developers, Web:
http://developer.android.com/design/index.html.

[3] B. Mushko, Gradle in Action, Shelter Island, NY: Manning Publication
Co., 2014.

[4] Gradle Plugin User Guide — Android Tools Project Site, Web:
http://tools.android.com/tech-docs/new-build-system/user-guide.

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 184

