
A Hybrid Peer-to-Peer Recommendation System
 Architecture Based on Locality-Sensitive Hashing

Alexander Smirnov*†, Andrew Ponomarev*
*St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences, St. Petersburg, Russia

†University ITMO, St. Petersburg, Russia
{smir, ponomarev}@iias.spb.su

Abstract—Recommendation systems have become

ubiquitous recently as they help to mitigate information
overflow of the nowadays life. The vast majority of current
recommendation system approaches are centralized. Although
centralized recommendations have several significant
advantages, they also have two main drawbacks: single point
of failure and the necessity for users to share their
preferences. In this paper, a system architecture of a peer-to-
peer recommendation system with limited preferences
disclosure is proposed. The proposed architecture is based on
a locality-sensitive hashing of user preferences and an
anonymized distributed hash table approach to peer-to-peer
design.

I. INTRODUCTION
Recommendation systems play important role in dealing

with information overflow of the nowadays life. Most of the
current recommendation systems have a centralized design.
It is beneficent mainly because it allows to employ a broad
spectrum of user preference models to predict future user
behavior. It also puts all the relevant user information under
the control of recommendation system provider allowing to
perform various research activities on this data beside
providing users with online recommendations.

Centralized approach has several drawbacks. First, it
introduces a quandary about rights on the preferences data
collected about a user. A user is usually not aware of what
information a system collects about his/her behavior and
cannot extract this information from the centralized system.
Second, the centralization is in the matter of fact only
partial. In other words, a user may communicate to several
recommendation systems, sharing with each system some
part of his/her preferences profile but all user preferences
become spread between several recommendations with no
chance of being united. It is not desirable, because a
complete preferences profile can lead to recommendations
that are more accurate. Third, centralization usually leads to
single point of failure, but in modern computer systems, this
drawback is usually alleviated by multilevel duplication and
replication.

In this paper, a user-centric approach to recommendation
systems design is examined. According to this approach, a
user holds all his/her preferences on his/her own. This
entirely removes the quandary about rights – a user fully

controls his/her preferences storage. This can also remove
preferences partitioning as all the user preferences become
centralized in a device, controlled by the user. When in need
of recommendations, a users’ device queries other devices
for them.

Decentralized recommendation systems carry two main
advantages:

- the recommendations can be distributed among all
users, removing the need of costly central server and
enhancing scalability;

- a decentralized recommendation improves the privacy
of the users, as there is no central entity owning private
information of the users (though this is a subtle topic due to
immanent security issues of peer-to-peer systems).

Albeit all enumerated issues of centralized
recommendation design are addressed by user-centric
decentralized recommendation system design, there are
some other issues to be solved. To achieve in decentralized
recommendation the same characteristics as of centralized
one is an acute problem, because a large amount of
distributed data need to be managed and resource usage
need to be balanced.

In this paper, a recommendation system architecture that
follows the user-centric approach is proposed. It is a
structured peer-to-peer (P2P) network, where each peer
corresponds to one user and holds preferences thereof.
Recommendations are made by means of anonymized
communication between peers. The proposed architecture
provides limited preferences disclosure. It means that there
is no way to reliably match ratings and a user network
address having no global control over the entire P2P
network. The proposed architecture is a hybrid P2P as it
uses one special node for data-driven coordination that,
however, is not used directly in the recommendation
process.

The rest of the paper is structured as follows. Section 2
presents an overview of existing P2P recommendation
systems and approaches. In section 3, locality-sensitive
hashing approach to recommendations is discussed. Section
4 contains the description of the proposed recommendation

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

system architecture. Main results are summarized in the
conclusion.

II. RELATED WORK
Peer-to-peer recommendation systems design is already

addressed in literature.

In [1], [2] the P2Prec system is proposed. The idea of
this system is to recommend high quality documents related
to query topics and content hold by useful friends (or friends
of friends) of the users, by exploring friendship networks.
To disseminate information about relevant peers, they rely
on gossip algorithms. For publishing and discovering
services they use a distributed hash table.

The authors of P2Prec rely on two-level Latent Dirichlet
Allocation to automatically model topics. At the global level
performed by a bootstrap server a sample of documents is
collected from peers and a set of topics are inferred. Then, at
the local level, performed by each peer, local documents are
analyzed with respect to common topics. Each user
maintains a friendship network. A user enlarges the
friendship network by accretion of new friends relevant to
queries and having overlap with this users’ friendship
network.

To establish friendship and P2Prec relies on gossip
protocols.

Key-word queries are routed recursively through friends
networks, based on user trust and usefulness.

In a number of methods described in literature, overlay
network structure based on similarity between nodes is built
and recommendation algorithm is defined on this network
(as in [3] and [1]). Recommendations perform a search
among neighbors up to certain depth or certain similarity
threshold.

One of the algorithms of aligning network structure to
peer similarities is T-Man [4]. T-Man relies on the ability of
a peer to measure how it «likes» peers. Having defined this
relation, T-Man algorithm aligns the structure of the overlay
network to juxtapose peers that «like» each other.

The similarity-based overlay network structure is
extensively studied at [5] with the following result. It is
shown by the authors that overlay topologies that are
defined by node similarity have highly unbalanced degree
distributions which have to be taken into account when
load-balancing P2P recommendation network. They also
propose algorithms with favorable convergence of speed
and prediction accuracy taking load balancing into account.
They consider collaborative filtering system where
similarity of users measured as cosine similarity.

In the proposed architecture exact ratings are not
exposed together with node identity, so there is no way to
say how similar the two nodes are. Using locality-sensitive
hash values it can only be said whether they are likely to be
close enough or not.

Another approach is to rely on random walk search for
similar nodes in ordinary P2P network, using some form of
the flooding technique [6]. Similarly, in [7], it is shown that
it is enough to take a random sample of the network and use
the closest elements of that sample to make
recommendations.

In [8] random walks approach to collaborative filtering
recommendations is examined in the context of P2P
systems. The authors argue that the effect of random walk in
decentralized environment is quite different from the
centralized one. They also propose a system where epidemic
protocols (gossip protocols) are used to disseminate user
similarity information. They start from the random set of
peers and then in series of random exchanges compare their
local-view with the local view of the remote node, leaving
only the most similar peers in the local view (clustering
gossip protocol). This process converges to form some
overlay based on peers similarity. Then peers that are not
farther than 2 hops from given are used to make
recommendations.

In epidemic protocols (also known as gossip protocols),
peers have access to a Random Peer Sampling service (RPS)
providing them with a continuously changing random subset
of the peers of the network. When a peer joins the network,
her view is initialized at random through the RPS. Each peer
also maintains a view of the network. Gossip protocols are
fully decentralized, can handle high churn rates, and do not
require any specific protocol to recover from massive
failures.

There are also research papers where structured P2P
networks are used. For example, in [9], [10] distributed hash
tables are used to store ratings. The proposed approach
stands close to this way except that ratings are not stored in
a distributed hash table, instead a fast lookup capability
provided by this kind of P2P architecture is employed for
searching similar peers.

Most of the approaches involve sharing rating data
between nodes, while in the proposed architecture it is
avoided.

Privacy concerns are directly addressed in [11]. The
authors propose a file sharing network where users
exchange their data only with their friends and a
recommendation system on the top of it. They propose
privacy-conserving distributed collaborative filtering
approach that is based on exchanges of anonymized item
relevance ranks between peers. Their approach, however,
allows only unary ratings (initially, the fact of owning a
specific file).

Distributed recommendation systems are also analyzed
in quite another context, seeking for efficient parallel
implementations of centralized recommendation techniques.
This research direction is entirely out of the scope of this
paper.

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 120 --

III. LOCALITY-SENSITIVE HASHING FOR
RECOMMENDATIONS

Locality-sensitive hashing (LSH) is a method that is
widely used for probabilistic solution of k-NN (k Nearest
Neighbors) problem. The idea of this method is to hash
multidimensional objects in such a way that similar objects
(w.r.t some distance measure defined on them) are likely to
have the same hash value.

A. The idea of LSH
The problem of finding nearest neighbors is closely

related to the recommendation system domain. The reason is
rather straightforward and is based on an assumption that
users that had similar preferences in the past are likely to
have similar preferences now (and in the future). Therefore,
if user preferences are represented as a numerical vector and
some measure in that vector space is introduced that
corresponds to preference similarity, then the problem of
finding similar users translates into nearest neighbors
search.

In this section a formal description of collaborative
filtering recommendation method based on locality-sensitive
hashing is provided.

Let d1 < d2 be a two distances according to some
distance measure d. � family F of functions is said to be (d1,
d2, p1, p2)-sensitive if for every f in F [12]:

� If d(a, b) � d1, then probability that f(a) = f(b) is at
least p1.

� If d(a, b) � d2 then probability that f(a) � f(b) is at
most p2.

An important concept in the locality-sensitive hashing
theory is amplification.

Given a (d1, d2, p1, p2)-sensitive family F, a new family
F’ can be constructed by either AND-construction or OR-
construction.

AND-construction of F’ is defined as follows. Each
member of F’ consists of r members of F for some fixed r.
If f is in F’, and f is constructed from the set {f1, f2, …, fr} of
members of F, f(x) = f(y) if and only if fi(x) = fi(y) for all i =
1, 2, …, r.

As members of F’ are independently chosen from F, F’
is an (d1, d2, p1

r, p2
r)-sensitive family [12].

OR-construction of F’ is defined as follows. Each
member of F’ consists of b members of F for some fixed b.
If f is in F’, and f is constructed from the set {f1, f2, …, fb} of
members of F, f(x) = f(y) if and only if fi(x) = fi(y) for all i =
1, 2, …, b.

Similarly, F’ is an (d1, d2, 1 – (1 – p1)b, 1 – (1 – p2)b)-
sensitive family.

Generally, it is desirable that p1 is as large as possible
and p2 is as small as possible. If p1 is less then 1, then there

is some possibility that similar objects will have different
hash values. On the other hand, if p2 is greater than 0, there
is some possibility that distant objects will have similar hash
values. Therefore, family F is chosen in such a way that p1
is large (close to 1) and p2 is small (close to 0). There is a
finite set of well-studied locality-sensitive function families
and the desired levels of p1 and p2 can not always be
achieved with one “pure” family. This is where
amplification comes into play.

If family FAr is obtained as AND-construction of r
functions from family F, and G is then obtained as OR-
construction of b functions from family FAr, then G is a (d1,
d2, 1 – (1 – p1

r)b, 1 – (1 – p2
r)b)-sensitive family. Informally,

AND-construction mostly lowers the initially low p2
probability and subsequent OR-construction raises the
initially high p1 probability.

The idea of nearest neighbors search based on the LSH
is described, for example, in [12], [13]. First, a hash family
F (it is discussed in greater detail later on) is chosen and L
ordinary hash tables are arranged. Each hash table
corresponds to some hash function fAr

i, i = 1,…,L, where fAr
i

is an AND-construction of r random functions from F.
Every object x is stored to each of the L hash tables. Key is
the fAr

i(x) and value is either some identity of x or x itself. It
is natural that several objects can fall into one hash table
bucket.

When searching for the nearest neighbors of an object y,
first, fAr

i(y), i=1,..,L is calculated and then all values from
the corresponding hash maps are retrieved resulting in a set
of nearest neighbor candidates. Precise distance to each of
the candidates is then assessed and false positives are
removed.

Particular choice of hash function family depends on
data representation and distance function d. For Hamming
distance a bit sampling locality sensitive hash was proposed
in [14], for cosine distance a random projections method
was proposed in [15], a well-performing hash function for
Euclidean distance is proposed in [16].

In the proposed architecture random projections method
is used, i.e. function f from F corresponds to one random
hyperplane and checks whether point being hashed is above
or under this hyperplane.

B. Recommendations generation
User-based rating prediction collaborative filtering

system is a recommendation system that infers
recommendations (unknown user ratings) from the
similarity of users measured by the extent known user
ratings coincide.

More formally, let ruj be the rating assigned to the item j
by the user u, which corresponds to how user u liked item j,
or what was the subjective utility of j for u. Let U be the set
of all users, I – the set of all items, Iu – the set of items that
was rated by user u, and Iuv – the set of items rated by both

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 121 --

user u and user v. Usually, a user has ratings for relatively
small number of items, |Iu| << |I|. User-based rating
prediction collaborative filtering is one of the neighborhood
methods, i.e. it relies on some similarity measure between
users which is calculated based on common ratings (sim(u,
v) = fs({ruj, j � Iuv})) and estimate unknown rating r*uj based
on known ratings rvj and estimated similarities sim(u, v).

In the recommendation systems research there were
introduced several user similarity measures: Pearson and
Spearman correlation coefficients, Jaccard similarity,
Hamming distance, cosine similarity. The choice of
similarity measure mostly depends on user rating encoding.

In this paper, a cosine similarity is employed as a
similarity measure between users. Therefore:

��

�
�

uvuv

uv

I
vj

I
uj

vj
I

uj

rr

rr
vusim

22
),(

.

User ratings are normalized in such a way that ruj = 1
corresponds to strong positive attitude of user u to item j,
and ruj = -1 corresponds to strong negative attitude
respectively.

The prediction of an unknown rating r*uj requires the
search of users v that are similar to r*uj, or the nearest
neighbors of u according to cosine similarity measure.

Recommendation system using LSH follows the nearest
neighbor approach. Known a set of hash values for some
user u, it checks the respective hash tables and retrieves all
users whose interests are likely (due to hash function
properties) similar to u’s. Then exact similarity may be
assessed and high rated items of similar users are provided
to u.

To sum it up, in the proposed system architecture, a
profile of user u is a set of pairs (i, rui), where i are item
identifiers. Each of L locality-sensitive hash functions is
represented by b vectors, which dimensionality equals to the
number of items known. After application of all these hash
functions L b-dimensional binary vectors are obtained and
stored into hash table.

IV. SYSTEM ARCHITECTURE
The proposed hybrid architecture enables personalized

recommendations exchange with limited user preferences
disclosure. In this section, target use cases are discussed, as
well as components of the proposed system and scenarios
that implement target use cases.

A. Functions
Recommendation systems may provide slightly different

end-user features. Specifically, in this paper following
recommendation functions are considered: a) rating
prediction for a given item (or set of items); b)
recommendations query.

Rating prediction for a given item (or a set of items) is
involved when a user encounters some item and wants to
assess if it is potentially interesting or useful for him/her. In
this case, user passes the item (item identity) to
recommendation system and recommendation system
should return expected attitude of this user to this item.
Certainly, a user is not required to perform this request
intentionally by hand; some other program or GUI element
acting on behalf of the user can mediate this action. Rating
prediction request may contain several items. It may be very
convenient in some situations. Though rating prediction for
multiple items can always be implemented as a series of
single item rating predictions, it is interpreted here as a use
case extension, because in some circumstances rating
prediction for multiple items is potentially more efficient
that multiple separate single item requests.

Recommendations query is launched in quite another
situation. Here, a user just wants to see some
recommendations – maybe recommendations of new,
previously unseen and actual items.

B. Components
In the proposed architecture, recommendation system is

split into two parts: Peer-to-Peer (P2P) recommendations
network and the Master node (Fig. 1). The Master node
breaks the conceptual purity of the P2P design, making it a
hybrid P2P system, but it does not play a significant role in
the primary use cases of the system, namely rating
prediction for the given item and recommendation query.
Both enumerated earlier functions are implemented by P2P
network solely and the Master node is responsible for
synchronizing supplementary information between peers.

In Fig. 1 two types of connection between nodes are
shown: connections between similar peers used to get
recommendations are shown by solid lines, and occasional
connections of peers to the Master node for retrieving
supplementary information are depicted by dashed lines.

Fig. 1. Connections between nodes in the proposed architecture

1) Peer-to-Peer recommendations network: In the
proposed architecture, each user corresponds to exactly one
node (or peer – these terms are used here interchangeably).
That node holds all the information about one user’s
preferences, ratings, browsing history etc, but does not share

Users/Peers

The Master
node

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 122 --

this information with the other nodes, instead it shares only
the locality sensitive hash value of this information in order
to find similar users to query for recommendations.

P2P network is based on the Distributed Hash Table
(DHT) [17] model widely employed in various P2P
networks. The general idea of the DHT is rather
straightforward. It holds a collection of key/value pairs
scattered over a distributed set of nodes, supporting
key/value pair migration in case node disconnection. DHT
usually refers to a class of systems rather than to some
specific system or algorithm.

Original DHT has some severe security vulnerabilities.
To overcome these vulnerabilities a variety of secure and
anonymous DHT lookup implementations was designed
[18]. The proposed architecture relies on one of these
anonymized implementations, namely Octopus. The idea
behind most of secured DHT implementations is that all
DHT lookups are made through other nodes accessible by
anonymous path through anonymization relays. Each node
in anonymization path knows only neighbor nodes, but does
not know whether some request was originated in the
neighbor node, or was passed from some other node.

The DHT in the proposed system is used as a set of hash
tables needed for nearest neighbor search, as described in
section III. Each key/value pair stored in the DHT holds
information about one locality-sensitive hash value and the
list of nodes corresponding to that hash value. As it was
discussed in the respective section, several (L) hash tables
are needed to perform nearest neighbor search. Each of the L
tables uses its own locality-sensitive hash function. It is
proposed to store all of these L hash tables in one DHT. In
order to achieve this, key of the DHT pair should include
global unique identifier of the locality-sensitive hash
function and the value of that function.

Each node of the P2P network has a unique identifier,
which is assigned to the node when it first connects to the
network. In most DHT implementations, node identifier is a
160-bit value that is produced by applying SHA-1 to the
network address of the node.

Before a node advertises itself in a DHT, it creates an
anonymized path and uses the endpoint specification of this
path as an address it tells to other nodes. These anonymized
paths are created each time node connects network, resulting
in different public identifiers of the same node.

As user preferences expressed in ratings are not
changing very fast, it is reasonable for each node to locate
through DHT and store other nodes with the similar profiles.
Therefore, a new overlay network of similar users is formed
over P2P network. It is important to differentiate between
the three employed connection layers (Fig. 2). The first layer
is the underlying network, which provides physical
connection between P2P nodes. The second layer is DHT
connection layer which provides DHT key search, key

Fig. 2. Peer-to-Peer layers

redistribution etc. This layer is provided by links to adjacent
nodes in structured P2P, so called “fingers”. The third layer
is formed by connections between similar nodes, where
similarity is interpreted like equality of locality-sensitive
hashes.

It is important to note, that links to neighbor nodes in the
third layer are not exactly identifiers of nodes in P2P
network, but are entrances to anonymized paths to that
nodes.

2) The Master node: The distributed nature of the
proposed system causes one hindrance. LSH-based nearest
neighbor search implies that when searching for neighbors
of object x, all the locality-sensitive hash functions that were
used to hash other objects and fill hash tables are applied to
x. In the proposed architecture, an object being hashed is a
vector of all ratings assigned by the user to different items of
interest and hashing functions family is random hyperplane
projections. To define a hyperplane the dimensionality of
the space have to be known. In some cases, for instance,
when rating storage is centralized, when ratings are
immutable or all possible items are known in advance,
knowing dimensionality is not a problem. However, in case
of distributed rating storage when each node holds only
ratings of one user, overall item space dimensionality can be
found out only though communication between nodes.
Dimensionality not only means the number of dimensions,
but also their order. It is easy to see that if one user
encounters items in the following order: (Item1:1, Item2:-
0.5, Item3:1), and another user encounters and rates the
same items in another order: (Item1:1, Item3:1, Item2:-0.5),
then their hashes with hyperplane (0,1,0) would be different
although ratings match perfectly.

Similar nodes (neighbors)

Peer-to-Peer (DHT)

Physical network

Router
IP address

Node ID

Anonymized
node ID

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 123 --

Hence, it is needed to synchronize item space
characteristics and random projection hyperplanes across all
nodes. The problem of maintaining global shared state in
P2P network is rather nettlesome, and there are numerous
papers dedicated to this problem, e.g. [19],[20],[21]. In the
proposed system this problem is addressed in a way similar
to one from [22], sacrificing the P2P-purity of the system. It
is the Master node that, first, collects all new items
discovered and rated by peers, maintains their ordering and
generates new locality-sensitive hash functions. So, each
peer must connect to the Master node in two situations: first,
to notify about some previously unknown item (which
should become a new dimension), second, to get a new set
of locality-sensitive hash functions. It must be noted, that
there is no necessity in generation of new hash functions
after each new assessed item. Using outdated hash functions
with lower dimensions is still possible, but it gradually
decreases the quality of recommendations. So, each user
node collects new rated items (which was not assigned
identifiers yet) and then sends batch of these items to the
Master node. The Master node, in its turn, accumulates new
items, and when there are many of them, assigns them an
ordering and issues a new set of locality sensitive hash
functions. It is also important that the new set is not an
entire replacement of the previous, but contains only several
new functions.

C. Scenarios
1) Rating prediction for a given item: Rating prediction

in a node is possible only after this node has integrated into
the P2P network and has located the nodes of the users with
similar ratings (hereinafter these nodes are referred to as
neighbor nodes). Let the neighbor nodes for the given one
are stored in the Neighbors list. Then rating prediction for
the item Item is performed by sending requests to each node
from the Neighbors list passing the item identifiers.

Each neighbor node answers with rating estimation, or
empty value if it can not estimate rating for the requested
item.

Rating prediction for the set of items is done mostly in
the same way, except that requester node passes a list of
item identifiers instead one identifier and the answer
contains a list of pairs (itemId, rating) for all items that the
neighbor node is able to estimate.

Informally, rating prediction scenario can be interpreted
as asking an advice from co-minded people. In centralized
systems it is performed in some conceptual way, in the
proposed hybrid P2P system it is performed literally sending
requests to the respective nodes.

When answering rating prediction request, a node can
report the rating that is stored for the given item, or infer the
rating from some other information. This is an extension
point of the proposed system architecture.

These requests are send and answered through
anonymization relays, so a node does not expose both its
identity and an exact rating for an item.

2) Recommendations query: In this case, node that needs
recommendations just sends corresponding requests to each
of the neighbor nodes. Each neighbor node answers with a
list of (item, rating) pairs. Unlike the previous scenario, here
neighbor node needs to send not just an identifiers of the
recommended items, but their entity, something that the
receiver side can use directly.

The way neighbor node forms the recommendations list
is also an extension point. In the simplest case, it should
return some random sample of the high-rated items, it may
also return only new high-rated items.

Anonymization relays make sure that recommendations
provider does not expose both ratings and its identity.

3) Rate item (supplementary scenario): The main issue
of rating items is rating new items and generation of new
locality-sensitive hash functions that must follow it. To
address this issue each node has two lists: Known and New.
The Known list holds all the items that are known of by the
Master node. This list is received from the Master node
during the bootstrap process of periodical synchronization
process. The order of items in this list is also important as it
corresponds to the order of dimensions of locality-sensitive
hash functions. New list, on the other hand, holds the items
that are discovered by this node and are not yet approved by
the Master node. When a user rates an item, the rating is
saved and then, if the item is neither in Known, nor in New
lists it is added to the New list.

When New list exceeds some predefined size or once in
a predefined period (whatever happens first), each node
sends their New list to the Master node and queries the
Master node for the global shared state. Global shared state
from the Master node includes up-to-date version of the
Known list. Each node augments its Known list according to
the one received from the Master node and removes from
New list items that are present in Known list.

4) Refresh hash functions (supplementary scenario):
Each node periodically queries the Master node for the
global shared state. As it was described earlier, there are L
functions, and each hash function is a vector of k m-
dimensional random vectors (representing random
hyperplanes). To reduce the amount of information
exchange and load of the Master node, each hash function
posted by the Master node is represented by three integers:
function unique identifier (funcId), random seed and current
number of items m (i.e. item space dimensionality). When a
node gets this information it generates random hyperplanes
constituting the locality-sensitive hash function as a
sequence of k*m (m dimensions for each of k hyperplanes)
random numbers from the specified seed using Mersenne
twister [23].

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 124 --

5) The search for similar peers (supplementary
scenario): The search for similar, or neighbor, peers is
initiated when a node is registered in P2P network. Then
this search is performed regularly. Before searching for
neighbors a node have to refresh item list and hash functions
from the Master node. Then each function from an up-to-
date set of hash functions is applied to this node ratings
vector. The results are merged into pairs (funcId, value) and
these pairs are used as keys to look up in DHT. DHT look
up returns a list of node identifiers similar to this one
according to respective locality-sensitive function. These
lists are then merged and stored as the Neighbors list.

V. CONCLUSION
In this paper an architecture of a user-centric peer-to-

peer recommendation system, based on locality-sensitive
hashing is proposed. In the proposed architecture user
ratings are shared only in anonymized way.

Though the experimental evaluation of the proposed
architecture is in progress, some limitations of this
approach can already be enumerated. First, due to DHT
limitations it is not suitable for P2P networks with high
churn, second, it is most likely does not fit highly
dynamical domains, such as news recommendation,
because the need of sharing information about all objects
all over the P2P network.

In the future, the authors are planning to consider
alternative solutions to sharing global set of locality-
sensitive hash functions among peers.

ACKNOWLEDGMENT
The research was supported partly by projects funded

by grants # 13-01-00271, # 13-07-13159, # 13-07-12095,
13-07-00039, and # 14-07-00345 of the Russian
Foundation for Basic Research, project 213 (program 15) of
the Presidium of the Russian Academy of Sciences, and
project #2.2 of the basic research program “Intelligent
information technologies, system analysis and automation”
of the Nanotechnology and Information technology
Department of the Russian Academy of Sciences.

REFERENCES

[1] F. Draidi, E. Pacitti, B. Kemme “P2Prec: a P2P recommendation
system for large-scale data sharing”, Journal of Transactions on
Large-Scale Data and Knowledge-Centered Systems (TLDKS),
Springer, LNCS 6790, vol. 3, 2011, pp. 87-116.

[2] F. Draidi, E. Pacitti, D. Parigot, G. Verger “P2Prec: a social-
based P2P recommendation system”, in proceedings of the 20th
ACM international conference on Information and knowledge
management, pp. 2593-2596.

[3] G. Pitsilis, L. Marshall “A trust-enabled P2P recommendation
system”, in Proc. 15th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2006,
pp. 59-64.

[4] M. Jelasity, A. Montresor, O. Babaoglu “T-Man: Gossip-based
fast overlay topology construction”, Computer Networks, 53, 13
(August 2009), pp. 2321-2339.

[5] R. Ormandi, I. Hegedus, M. Jelasity “Overlay management for
fully distributed user-based collaborative filtering”, Euro-Par
2010, pp. 446-457.

[6] A. Tveit “Peer-to-peer based recommendations for mobile
commerce”, in Proc. 1st Intl. workshop on Mobile commerce
(WMC’01), ACM, 2001, pp. 26-29.

[7] A. Bakker, E. Ogston, M. van Steen “Collaborative filtering using
random neighbours in Peer-to-Peer networks”, Workshop on
Complex Networks in Information & Knowledge Management,
2009, pp. 67-75.

[8] A.-M. Kermarrec, V. Leroy, A. Moin, C. Thraves. “Application
of random walks to decentralized recommendation systems”, in
proceeding of the 14th international conference on Principles of
distributed systems, 2010, pp. 48-63.

[9] F. Hecht, T, Bocek, N. Bär, R. Erdin et al. “Radiommendation:
P2P on-line radio with a distributed recommendation system”, in
Proceedings of the IEEE 12th International Conference on Peer-
to-Peer computing, 2012, pp. 73-74.

[10] P. Han, B. Xie, F. Yang, R. Shen “A scalable P2P
recommendation system based on distributed collaborative
filtering”, Expert Systems with Applications 27(2), 2004, pp. 203-
210.

[11] K. Pussep, S. Kaune, J. Flick, R. Steinmetz “A Peer-to-Peer
Recommendation System with Privacy Constraints”, in CISIS:
IEEE Computer Society, 2009. pp. 409-414.

[12] A.Rajaraman, J.Ullman Mining of Massive Datasets. Cambridge
University Press, 2012.

[13] M.Slanley, M.Casey “Locality-Sensitive Hashing for Finding
Nearest Neighbors”, IEEE Signal Processing Magazine, vol.25,
no.2, March.2008, pp. 128-131.

[14] P.Indyk, R. Motwani “Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality”, in STOC’98
Proceedings of the 30th Symposium on Theory of Computing,
1998, pp.604-613.

[15] M.S.Charikar “Similarity Estimation Techniques from Rounding
Algorithms”, in STOC’02 Proceedings of the 34th annual ACM
symposium on Theory of Computing, 2002, pp. 380-388.

[16] M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni “Locality-
Sensitive Hashing Scheme Based on p-Stable Distributions”, in
SCG’04 Proceedings of the 20th annual symposium on
Computational geometry, 2004, pp. 253-262.

[17] D. Korzun, A. Gurtov Structured Peer-to-Peer Systems.
Fundamentals of Hierarchical Organization, Routing, Scaling
and Security. Springer, 2013.

[18] Q. Wang, N. Borisov “Octopus: A Secure and Anonymous DHT
Lookup”, in Proceedings of the IEEE 32nd International
Conference on Distributed Computing Systems, 2012, pp. 325-
334.

[19] X. Chen, S. Ren, H. Wang, X. Zhang “SCOPE: Scalable
Consistency Maintance in Structured P2P Systems”, in Proc. of
IEEE INFOCOM, 2005, pp. 1502-1513.

[20] G. Oster, P. Urso, P. Molli, A. Imine “Data consistency for P2P
collaborative editing”, in CSCW’06 Proceedings of the 20th
anniversary conference on Computer supported cooperative
work, 2006, pp. 259-268.

[21] Y. Hu, L.N. Bhuyan, M. Feng “Maintaining Data Consistency in
Structured P2P Systems”, Parallel and Distributed Systems, IEEE
Transactions, Vol.23, Issue 11, 2012, pp. 2125-2137.

[22] C. Mastroianni, G. Pirro, D. Talia “Data Consistency and Peer
Synchronization in Cooperative P2P Environments”, Technical
Report, unpublished

[23] M. Matsumoto, T. Nishimura “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number
generator”, ACM Transactions on Modeling and Computer
Simulation, Vol. 8, Issue 1, 1998, pp. 3-30.

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 125 --

