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Abstract—Recommendation systems have become 

ubiquitous recently as they help to mitigate information 
overflow of the nowadays life. The vast majority of current 
recommendation system approaches are centralized. Although 
centralized recommendations have several significant 
advantages, they also have two main drawbacks: single point 
of failure and the necessity for users to share their 
preferences. In this paper, a system architecture of a peer-to-
peer recommendation system with limited preferences 
disclosure is proposed. The proposed architecture is based on 
a locality-sensitive hashing of user preferences and an 
anonymized distributed hash table approach to peer-to-peer 
design. 

I. INTRODUCTION 
Recommendation systems play important role in dealing 

with information overflow of the nowadays life. Most of the 
current recommendation systems have a centralized design. 
It is beneficent mainly because it allows to employ a broad 
spectrum of user preference models to predict future user 
behavior. It also puts all the relevant user information under 
the control of recommendation system provider allowing to 
perform various research activities on this data beside 
providing users with online recommendations. 

Centralized approach has several drawbacks. First, it 
introduces a quandary about rights on the preferences data 
collected about a user. A user is usually not aware of what 
information a system collects about his/her behavior and 
cannot extract this information from the centralized system. 
Second, the centralization is in the matter of fact only 
partial. In other words, a user may communicate to several 
recommendation systems, sharing with each system some 
part of his/her preferences profile but all user preferences 
become spread between several recommendations with no 
chance of being united. It is not desirable, because a 
complete preferences profile can lead to recommendations 
that are more accurate. Third, centralization usually leads to 
single point of failure, but in modern computer systems, this 
drawback is usually alleviated by multilevel duplication and 
replication. 

In this paper, a user-centric approach to recommendation 
systems design is examined. According to this approach, a 
user holds all his/her preferences on his/her own. This 
entirely removes the quandary about rights – a user fully 

controls his/her preferences storage. This can also remove 
preferences partitioning as all the user preferences become 
centralized in a device, controlled by the user. When in need 
of recommendations, a users’ device queries other devices 
for them. 

Decentralized recommendation systems carry two main 
advantages: 

- the recommendations can be distributed among all 
users, removing the need of costly central server and 
enhancing scalability; 

- a decentralized recommendation improves the privacy 
of the users, as there is no central entity owning private 
information of the users (though this is a subtle topic due to 
immanent security issues of peer-to-peer systems). 

Albeit all enumerated issues of centralized 
recommendation design are addressed by user-centric 
decentralized recommendation system design, there are 
some other issues to be solved. To achieve in decentralized 
recommendation the same characteristics as of centralized 
one is an acute problem, because a large amount of 
distributed data need to be managed and resource usage 
need to be balanced. 

In this paper, a recommendation system architecture that 
follows the user-centric approach is proposed. It is a 
structured peer-to-peer (P2P) network, where each peer 
corresponds to one user and holds preferences thereof. 
Recommendations are made by means of anonymized 
communication between peers. The proposed architecture 
provides limited preferences disclosure. It means that there 
is no way to reliably match ratings and a user network 
address having no global control over the entire P2P 
network. The proposed architecture is a hybrid P2P as it 
uses one special node for data-driven coordination that, 
however, is not used directly in the recommendation 
process. 

The rest of the paper is structured as follows. Section 2 
presents an overview of existing P2P recommendation 
systems and approaches. In section 3, locality-sensitive 
hashing approach to recommendations is discussed. Section 
4 contains the description of the proposed recommendation 
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system architecture. Main results are summarized in the 
conclusion. 

II. RELATED WORK 
Peer-to-peer recommendation systems design is already 

addressed in literature. 

In [1], [2] the P2Prec system is proposed. The idea of 
this system is to recommend high quality documents related 
to query topics and content hold by useful friends (or friends 
of friends) of the users, by exploring friendship networks. 
To disseminate information about relevant peers, they rely 
on gossip algorithms. For publishing and discovering 
services they use a distributed hash table. 

The authors of P2Prec rely on two-level Latent Dirichlet 
Allocation to automatically model topics. At the global level 
performed by a bootstrap server a sample of documents is 
collected from peers and a set of topics are inferred. Then, at 
the local level, performed by each peer, local documents are 
analyzed with respect to common topics. Each user 
maintains a friendship network. A user enlarges the 
friendship network by accretion of new friends relevant to 
queries and having overlap with this users’ friendship 
network. 

To establish friendship and P2Prec relies on gossip 
protocols.  

Key-word queries are routed recursively through friends 
networks, based on user trust and usefulness. 

In a number of methods described in literature, overlay 
network structure based on similarity between nodes is built 
and recommendation algorithm is defined on this network 
(as in [3] and [1]). Recommendations perform a search 
among neighbors up to certain depth or certain similarity 
threshold. 

One of the algorithms of aligning network structure to 
peer similarities is T-Man [4]. T-Man relies on the ability of 
a peer to measure how it «likes» peers. Having defined this 
relation, T-Man algorithm aligns the structure of the overlay 
network to juxtapose peers that «like» each other. 

The similarity-based overlay network structure is 
extensively studied at [5] with the following result. It is 
shown by the authors that overlay topologies that are 
defined by node similarity have highly unbalanced degree 
distributions which have to be taken into account when 
load-balancing P2P recommendation network. They also 
propose algorithms with favorable convergence of speed 
and prediction accuracy taking load balancing into account. 
They consider collaborative filtering system where 
similarity of users measured as cosine similarity. 

In the proposed architecture exact ratings are not 
exposed together with node identity, so there is no way to 
say how similar the two nodes are. Using locality-sensitive 
hash values it can only be said whether they are likely to be 
close enough or not.  

Another approach is to rely on random walk search for 
similar nodes in ordinary P2P network, using some form of 
the flooding technique [6]. Similarly, in [7], it is shown that 
it is enough to take a random sample of the network and use 
the closest elements of that sample to make 
recommendations. 

In [8] random walks approach to collaborative filtering 
recommendations is examined in the context of P2P 
systems. The authors argue that the effect of random walk in 
decentralized environment is quite different from the 
centralized one. They also propose a system where epidemic 
protocols (gossip protocols) are used to disseminate user 
similarity information. They start from the random set of 
peers and then in series of random exchanges compare their 
local-view with the local view of the remote node, leaving 
only the most similar peers in the local view (clustering 
gossip protocol). This process converges to form some 
overlay based on peers similarity. Then peers that are not 
farther than 2 hops from given are used to make 
recommendations. 

In epidemic protocols (also known as gossip protocols), 
peers have access to a Random Peer Sampling service (RPS) 
providing them with a continuously changing random subset 
of the peers of the network. When a peer joins the network, 
her view is initialized at random through the RPS. Each peer 
also maintains a view of the network. Gossip protocols are 
fully decentralized, can handle high churn rates, and do not 
require any specific protocol to recover from massive 
failures. 

There are also research papers where structured P2P 
networks are used. For example, in [9], [10] distributed hash 
tables are used to store ratings. The proposed approach 
stands close to this way except that ratings are not stored in 
a distributed hash table, instead a fast lookup capability 
provided by this kind of P2P architecture is employed for 
searching similar peers. 

Most of the approaches involve sharing rating data 
between nodes, while in the proposed architecture it is 
avoided. 

Privacy concerns are directly addressed in [11]. The 
authors propose a file sharing network where users 
exchange their data only with their friends and a 
recommendation system on the top of it. They propose 
privacy-conserving distributed collaborative filtering 
approach that is based on exchanges of anonymized item 
relevance ranks between peers. Their approach, however, 
allows only unary ratings (initially, the fact of owning a 
specific file). 

Distributed recommendation systems are also analyzed 
in quite another context, seeking for efficient parallel 
implementations of centralized recommendation techniques. 
This research direction is entirely out of the scope of this 
paper. 
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III. LOCALITY-SENSITIVE HASHING FOR 
RECOMMENDATIONS 

Locality-sensitive hashing (LSH) is a method that is 
widely used for probabilistic solution of k-NN (k Nearest 
Neighbors) problem. The idea of this method is to hash 
multidimensional objects in such a way that similar objects 
(w.r.t some distance measure defined on them) are likely to 
have the same hash value. 

A. The idea of LSH 
The problem of finding nearest neighbors is closely 

related to the recommendation system domain. The reason is 
rather straightforward and is based on an assumption that 
users that had similar preferences in the past are likely to 
have similar preferences now (and in the future). Therefore, 
if user preferences are represented as a numerical vector and 
some measure in that vector space is introduced that 
corresponds to preference similarity, then the problem of 
finding similar users translates into nearest neighbors 
search. 

In this section a formal description of collaborative 
filtering recommendation method based on locality-sensitive 
hashing is provided. 

Let d1 < d2 be a two distances according to some 
distance measure d. � family F of functions is said to be (d1, 
d2, p1, p2)-sensitive if for every f in F [12]: 

� If d(a, b) � d1, then probability that f(a) = f(b) is at 
least p1. 

� If d(a, b) � d2 then probability that f(a) � f(b) is at 
most p2. 

An important concept in the locality-sensitive hashing 
theory is amplification. 

Given a (d1, d2, p1, p2)-sensitive family F, a new family 
F’ can be constructed by either AND-construction or OR-
construction. 

AND-construction of F’ is defined as follows. Each 
member of F’ consists of r members of F for some fixed r. 
If f is in F’, and f is constructed from the set {f1, f2, …, fr} of 
members of F, f(x) = f(y) if and only if fi(x) = fi(y) for all i = 
1, 2, …, r. 

As members of F’ are independently chosen from F, F’ 
is an (d1, d2, p1

r, p2
r)-sensitive family [12]. 

OR-construction of F’ is defined as follows. Each 
member of F’ consists of b members of F for some fixed b. 
If f is in F’, and f is constructed from the set {f1, f2, …, fb} of 
members of F, f(x) = f(y) if and only if fi(x) = fi(y) for all i = 
1, 2, …, b. 

Similarly, F’ is an (d1, d2, 1 – (1 – p1)b, 1 – (1 – p2)b)-
sensitive family. 

Generally, it is desirable that p1 is as large as possible 
and p2 is as small as possible. If p1 is less then 1, then there 

is some possibility that similar objects will have different 
hash values. On the other hand, if p2 is greater than 0, there 
is some possibility that distant objects will have similar hash 
values. Therefore, family F is chosen in such a way that p1 
is large (close to 1) and p2 is small (close to 0). There is a 
finite set of well-studied locality-sensitive function families 
and the desired levels of p1 and p2 can not always be 
achieved with one “pure” family. This is where 
amplification comes into play. 

If family FAr is obtained as AND-construction of r 
functions from family F, and G is then obtained as OR-
construction of b functions from family FAr, then G is a (d1, 
d2, 1 – (1 – p1

r)b, 1 – (1 – p2
r)b)-sensitive family. Informally, 

AND-construction mostly lowers the initially low p2 
probability and subsequent OR-construction raises the 
initially high p1 probability. 

The idea of nearest neighbors search based on the LSH 
is described, for example, in [12], [13]. First, a hash family 
F (it is discussed in greater detail later on) is chosen and L 
ordinary hash tables are arranged. Each hash table 
corresponds to some hash function fAr

i, i = 1,…,L, where fAr
i 

is an AND-construction of r random functions from F. 
Every object x is stored to each of the L hash tables. Key is 
the fAr

i(x) and value is either some identity of x or x itself. It 
is natural that several objects can fall into one hash table 
bucket. 

When searching for the nearest neighbors of an object y, 
first, fAr

i(y), i=1,..,L is calculated and then all values from 
the corresponding hash maps are retrieved resulting in a set 
of nearest neighbor candidates. Precise distance to each of 
the candidates is then assessed and false positives are 
removed. 

Particular choice of hash function family depends on 
data representation and distance function d. For Hamming 
distance a bit sampling locality sensitive hash was proposed 
in [14], for cosine distance a random projections method 
was proposed in [15], a well-performing hash function for 
Euclidean distance is proposed in [16]. 

In the proposed architecture random projections method 
is used, i.e. function f from F corresponds to one random 
hyperplane and checks whether point being hashed is above 
or under this hyperplane. 

B. Recommendations generation 
User-based rating prediction collaborative filtering 

system is a recommendation system that infers 
recommendations (unknown user ratings) from the 
similarity of users measured by the extent known user 
ratings coincide. 

More formally, let ruj be the rating assigned to the item j 
by the user u, which corresponds to how user u liked item j, 
or what was the subjective utility of j for u. Let U be the set 
of all users, I – the set of all items, Iu – the set of items that 
was rated by user u, and Iuv – the set of items rated by both 
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user u and user v. Usually, a user has ratings for relatively 
small number of items, |Iu| << |I|. User-based rating 
prediction collaborative filtering is one of the neighborhood 
methods, i.e. it relies on some similarity measure between 
users which is calculated based on common ratings (sim(u, 
v) = fs({ruj, j � Iuv})) and estimate unknown rating r*uj based 
on known ratings rvj and estimated similarities sim(u, v). 

In the recommendation systems research there were 
introduced several user similarity measures: Pearson and 
Spearman correlation coefficients, Jaccard similarity, 
Hamming distance, cosine similarity. The choice of 
similarity measure mostly depends on user rating encoding. 

In this paper, a cosine similarity is employed as a 
similarity measure between users. Therefore: 
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User ratings are normalized in such a way that ruj = 1 
corresponds to strong positive attitude of user u to item j, 
and ruj = -1 corresponds to strong negative attitude 
respectively. 

The prediction of an unknown rating r*uj requires the 
search of users v that are similar to r*uj, or the nearest 
neighbors of u according to cosine similarity measure. 

Recommendation system using LSH follows the nearest 
neighbor approach. Known a set of hash values for some 
user u, it checks the respective hash tables and retrieves all 
users whose interests are likely (due to hash function 
properties) similar to u’s. Then exact similarity may be 
assessed and high rated items of similar users are provided 
to u. 

To sum it up, in the proposed system architecture, a 
profile of user u is a set of pairs (i, rui), where i are item 
identifiers. Each of L locality-sensitive hash functions is 
represented by b vectors, which dimensionality equals to the 
number of items known. After application of all these hash 
functions L b-dimensional binary vectors are obtained and 
stored into hash table. 

IV. SYSTEM ARCHITECTURE 
The proposed hybrid architecture enables personalized 

recommendations exchange with limited user preferences 
disclosure. In this section, target use cases are discussed, as 
well as components of the proposed system and scenarios 
that implement target use cases. 

A. Functions 
Recommendation systems may provide slightly different 

end-user features. Specifically, in this paper following 
recommendation functions are considered: a) rating 
prediction for a given item (or set of items); b) 
recommendations query. 

Rating prediction for a given item (or a set of items) is 
involved when a user encounters some item and wants to 
assess if it is potentially interesting or useful for him/her. In 
this case, user passes the item (item identity) to 
recommendation system and recommendation system 
should return expected attitude of this user to this item. 
Certainly, a user is not required to perform this request 
intentionally by hand; some other program or GUI element 
acting on behalf of the user can mediate this action. Rating 
prediction request may contain several items. It may be very 
convenient in some situations. Though rating prediction for 
multiple items can always be implemented as a series of 
single item rating predictions, it is interpreted here as a use 
case extension, because in some circumstances rating 
prediction for multiple items is potentially more efficient 
that multiple separate single item requests. 

Recommendations query is launched in quite another 
situation. Here, a user just wants to see some 
recommendations – maybe recommendations of new, 
previously unseen and actual items. 

B. Components 
In the proposed architecture, recommendation system is 

split into two parts: Peer-to-Peer (P2P) recommendations 
network and the Master node (Fig. 1). The Master node 
breaks the conceptual purity of the P2P design, making it a 
hybrid P2P system, but it does not play a significant role in 
the primary use cases of the system, namely rating 
prediction for the given item and recommendation query. 
Both enumerated earlier functions are implemented by P2P 
network solely and the Master node is responsible for 
synchronizing supplementary information between peers. 

In Fig. 1 two types of connection between nodes are 
shown: connections between similar peers used to get 
recommendations are shown by solid lines, and occasional 
connections of peers to the Master node for retrieving 
supplementary information are depicted by dashed lines. 

 

Fig. 1. Connections between nodes in the proposed architecture 

1) Peer-to-Peer recommendations network: In the 
proposed architecture, each user corresponds to exactly one 
node (or peer – these terms are used here interchangeably). 
That node holds all the information about one user’s 
preferences, ratings, browsing history etc, but does not share 

Users/Peers 

The Master 
node 
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this information with the other nodes, instead it shares only 
the locality sensitive hash value of this information in order 
to find similar users to query for recommendations. 

P2P network is based on the Distributed Hash Table 
(DHT) [17] model widely employed in various P2P 
networks. The general idea of the DHT is rather 
straightforward. It holds a collection of key/value pairs 
scattered over a distributed set of nodes, supporting 
key/value pair migration in case node disconnection. DHT 
usually refers to a class of systems rather than to some 
specific system or algorithm. 

Original DHT has some severe security vulnerabilities. 
To overcome these vulnerabilities a variety of secure and 
anonymous DHT lookup implementations was designed 
[18]. The proposed architecture relies on one of these 
anonymized implementations, namely Octopus. The idea 
behind most of secured DHT implementations is that all 
DHT lookups are made through other nodes accessible by 
anonymous path through anonymization relays. Each node 
in anonymization path knows only neighbor nodes, but does 
not know whether some request was originated in the 
neighbor node, or was passed from some other node. 

The DHT in the proposed system is used as a set of hash 
tables needed for nearest neighbor search, as described in 
section III. Each key/value pair stored in the DHT holds 
information about one locality-sensitive hash value and the 
list of nodes corresponding to that hash value. As it was 
discussed in the respective section, several (L) hash tables 
are needed to perform nearest neighbor search. Each of the L 
tables uses its own locality-sensitive hash function. It is 
proposed to store all of these L hash tables in one DHT. In 
order to achieve this, key of the DHT pair should include 
global unique identifier of the locality-sensitive hash 
function and the value of that function. 

Each node of the P2P network has a unique identifier, 
which is assigned to the node when it first connects to the 
network. In most DHT implementations, node identifier is a 
160-bit value that is produced by applying SHA-1 to the 
network address of the node. 

Before a node advertises itself in a DHT, it creates an 
anonymized path and uses the endpoint specification of this 
path as an address it tells to other nodes. These anonymized 
paths are created each time node connects network, resulting 
in different public identifiers of the same node. 

As user preferences expressed in ratings are not 
changing very fast, it is reasonable for each node to locate 
through DHT and store other nodes with the similar profiles. 
Therefore, a new overlay network of similar users is formed 
over P2P network. It is important to differentiate between 
the three employed connection layers (Fig. 2). The first layer 
is the underlying network, which provides physical 
connection between P2P nodes. The second layer is DHT 
connection layer which provides DHT key search, key 
 

 

Fig. 2. Peer-to-Peer layers 

redistribution etc. This layer is provided by links to adjacent 
nodes in structured P2P, so called “fingers”. The third layer 
is formed by connections between similar nodes, where 
similarity is interpreted like equality of locality-sensitive 
hashes. 

It is important to note, that links to neighbor nodes in the 
third layer are not exactly identifiers of nodes in P2P 
network, but are entrances to anonymized paths to that 
nodes. 

2) The Master node: The distributed nature of the 
proposed system causes one hindrance. LSH-based nearest 
neighbor search implies that when searching for neighbors 
of object x, all the locality-sensitive hash functions that were 
used to hash other objects and fill hash tables are applied to 
x. In the proposed architecture, an object being hashed is a 
vector of all ratings assigned by the user to different items of 
interest and hashing functions family is random hyperplane 
projections. To define a hyperplane the dimensionality of 
the space have to be known. In some cases, for instance, 
when rating storage is centralized, when ratings are 
immutable or all possible items are known in advance, 
knowing dimensionality is not a problem. However, in case 
of distributed rating storage when each node holds only 
ratings of one user, overall item space dimensionality can be 
found out only though communication between nodes. 
Dimensionality not only means the number of dimensions, 
but also their order. It is easy to see that if one user 
encounters items in the following order: (Item1:1, Item2:-
0.5, Item3:1), and another user encounters and rates the 
same items in another order: (Item1:1, Item3:1, Item2:-0.5), 
then their hashes with hyperplane (0,1,0) would be different 
although ratings match perfectly. 

Similar nodes (neighbors) 

Peer-to-Peer (DHT) 

Physical network 

Router 
IP address 

Node ID 

Anonymized 
node ID 
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Hence, it is needed to synchronize item space 
characteristics and random projection hyperplanes across all 
nodes. The problem of maintaining global shared state in 
P2P network is rather nettlesome, and there are numerous 
papers dedicated to this problem, e.g. [19],[20],[21]. In the 
proposed system this problem is addressed in a way similar 
to one from [22], sacrificing the P2P-purity of the system. It 
is the Master node that, first, collects all new items 
discovered and rated by peers, maintains their ordering and 
generates new locality-sensitive hash functions. So, each 
peer must connect to the Master node in two situations: first, 
to notify about some previously unknown item (which 
should become a new dimension), second, to get a new set 
of locality-sensitive hash functions. It must be noted, that 
there is no necessity in generation of new hash functions 
after each new assessed item. Using outdated hash functions 
with lower dimensions is still possible, but it gradually 
decreases the quality of recommendations. So, each user 
node collects new rated items (which was not assigned 
identifiers yet) and then sends batch of these items to the 
Master node. The Master node, in its turn, accumulates new 
items, and when there are many of them, assigns them an 
ordering and issues a new set of locality sensitive hash 
functions. It is also important that the new set is not an 
entire replacement of the previous, but contains only several 
new functions. 

C. Scenarios 
1) Rating prediction for a given item: Rating prediction 

in a node is possible only after this node has integrated into 
the P2P network and has located the nodes of the users with 
similar ratings (hereinafter these nodes are referred to as 
neighbor nodes). Let the neighbor nodes for the given one 
are stored in the Neighbors list. Then rating prediction for 
the item Item is performed by sending requests to each node 
from the Neighbors list passing the item identifiers. 

Each neighbor node answers with rating estimation, or 
empty value if it can not estimate rating for the requested 
item. 

Rating prediction for the set of items is done mostly in 
the same way, except that requester node passes a list of 
item identifiers instead one identifier and the answer 
contains a list of pairs (itemId, rating) for all items that the 
neighbor node is able to estimate. 

Informally, rating prediction scenario can be interpreted 
as asking an advice from co-minded people. In centralized 
systems it is performed in some conceptual way, in the 
proposed hybrid P2P system it is performed literally sending 
requests to the respective nodes. 

When answering rating prediction request, a node can 
report the rating that is stored for the given item, or infer the 
rating from some other information. This is an extension 
point of the proposed system architecture. 

These requests are send and answered through 
anonymization relays, so a node does not expose both its 
identity and an exact rating for an item. 

2) Recommendations query: In this case, node that needs 
recommendations just sends corresponding requests to each 
of the neighbor nodes. Each neighbor node answers with a 
list of (item, rating) pairs. Unlike the previous scenario, here 
neighbor node needs to send not just an identifiers of the 
recommended items, but their entity, something that the 
receiver side can use directly. 

The way neighbor node forms the recommendations list 
is also an extension point. In the simplest case, it should 
return some random sample of the high-rated items, it may 
also return only new high-rated items. 

Anonymization relays make sure that recommendations 
provider does not expose both ratings and its identity. 

3) Rate item (supplementary scenario): The main issue 
of rating items is rating new items and generation of new 
locality-sensitive hash functions that must follow it. To 
address this issue each node has two lists: Known and New. 
The Known list holds all the items that are known of by the 
Master node. This list is received from the Master node 
during the bootstrap process of periodical synchronization 
process. The order of items in this list is also important as it 
corresponds to the order of dimensions of locality-sensitive 
hash functions. New list, on the other hand, holds the items 
that are discovered by this node and are not yet approved by 
the Master node. When a user rates an item, the rating is 
saved and then, if the item is neither in Known, nor in New 
lists it is added to the New list. 

When New list exceeds some predefined size or once in 
a predefined period (whatever happens first), each node 
sends their New list to the Master node and queries the 
Master node for the global shared state. Global shared state 
from the Master node includes up-to-date version of the 
Known list. Each node augments its Known list according to 
the one received from the Master node and removes from 
New list items that are present in Known list. 

4) Refresh hash functions (supplementary scenario): 
Each node periodically queries the Master node for the 
global shared state. As it was described earlier, there are L 
functions, and each hash function is a vector of k m-
dimensional random vectors (representing random 
hyperplanes). To reduce the amount of information 
exchange and load of the Master node, each hash function 
posted by the Master node is represented by three integers: 
function unique identifier (funcId), random seed and current 
number of items m (i.e. item space dimensionality). When a 
node gets this information it generates random hyperplanes 
constituting the locality-sensitive hash function as a 
sequence of k*m (m dimensions for each of k hyperplanes) 
random numbers from the specified seed using Mersenne 
twister [23]. 
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5) The search for similar peers (supplementary 
scenario): The search for similar, or neighbor, peers is 
initiated when a node is registered in P2P network. Then 
this search is performed regularly. Before searching for 
neighbors a node have to refresh item list and hash functions 
from the Master node. Then each function from an up-to-
date set of hash functions is applied to this node ratings 
vector. The results are merged into pairs (funcId, value) and 
these pairs are used as keys to look up in DHT. DHT look 
up returns a list of node identifiers similar to this one 
according to respective locality-sensitive function. These 
lists are then merged and stored as the Neighbors list. 

V. CONCLUSION 
In this paper an architecture of a user-centric peer-to-

peer recommendation system, based on locality-sensitive 
hashing is proposed. In the proposed architecture user 
ratings are shared only in anonymized way. 

Though the experimental evaluation of the proposed 
architecture is in progress, some limitations of this 
approach can already be enumerated. First, due to DHT 
limitations it is not suitable for P2P networks with high 
churn, second, it is most likely does not fit highly 
dynamical domains, such as news recommendation, 
because the need of sharing information about all objects 
all over the P2P network. 

In the future, the authors are planning to consider 
alternative solutions to sharing global set of locality-
sensitive hash functions among peers. 
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