
VODRE: Visualisation of Drools Rules Execution

Maxim Lapaev, Maxim Kolchin
Saint Petersburg National Research University of Information Technologies,

Mechanics and Optics

Saint-Petersburg, Russia

m.lapaev@telemetria.ru, kolchinmax@niuitmo.ru

Abstract—Knowledge-based Systems and Expert Systems, in
particular, are expensive to build and difficult to validate and
debug because of their complexity and dynamism. Therefore,
it is not easy for knowledge engineer and domain expert to
identify the gaps and mistakes in knowledge base. Unit testing
is unable to cover validation process at all stages, in many cases
manual thorough review of decision process is needed. In this
paper we spot main approaches to validation and verification
issue and describe a component that helps to debug a knowledge
base by visualising execution of rules that derive a particular
result. This component is developed for Knowledge-based Systems
built on Drools Platform1 and we demonstrate application of
this component in a knowledge-based engineering system for
structural optical design.

I. INTRODUCTION

The standard of engineering when a decision could be
made only with a help of reference book, pencil and calcu-
lations is far behind. Today’s industry requires efficient on-
the-fly solutions and decisions. Sometimes not only effective
decision is important but the time to produce the solution, as
well. Nowadays the majority of knowledge-based systems are
complex artificial products which are able to take the place
of a real expert in a particular knowledge domain. Expert
systems (ES) became an indispensable part of industry and
reached almost all fields of modern life: finances, cartography,
military, industry, medicine, science and so forth [1], [2], [3],
[4]. Not only do expert systems simplify the process, they
make it more reliable and qualitative. However, ESs are aimed
not at replacing an expert but at becoming an assistant. Need
for urgent solutions requiring time-consuming calculations and
analysis and lack of highly-qualified domain experts make ES
development to become a perspective trend.

Although quality and efficiency of ES has improved dra-
matically over last decades, knowledge-based system engineers
still face difficulties. On the one hand, ES must be reliable
and produce right and optimal solutions quickly, on the other
hand, test and debug toolkit still leaves much to be desired. A
wide range of testing frameworks is available for developers
of conventional system, but only a few of them are suitable for
ES testing, validation and debugging. For example, JUnit2 is
one of the most distributed and recognised testing frameworks
among Java programmers, but as to consider knowledge-based
engineering, its functionality narrows to test cases related with
code base only and leaves knowledge base unattended. Any
expert system is at least a combination of user input-output
interface, knowledge base, rule base and decision system (code

1Drools Platform, URL: http://drools.org
2JUnit, URL:http://junit.org

base). It is obvious that regular test frameworks are suitable for
code base testing and debugging only. The same disadvantage
is peculiar to all testing frameworks aimed at testing code-
base and algorithms. Therefore, researches on evaluation in
knowledge-based engineering are made over last years.

Correctness of an expert system assumes that both the
right system was built and the system was built right [5].
These stages are referred to as validation and verification,
respectively. Using a system not thoroughly tested (unreliable
system) may cause a disastrous result, especially when a
failure is concerned not with material costs, but with security
or human life. Proper validation of an expert system must
ensure that both code base and knowledge base produce correct
solution. Domain rules and reasoning processes are to be
tested, as well. Prototyping is not suitable for testing large-
scaled systems as it is impossible to anticipate all possible
findings and decisions. Functionality of prototype is limited
to key aspects. Fine testing and debugging strategy includes
visualisation of reasoning. A coloured progress bar that is
popular in unit testing is not enough for inspection of test cases
and reasoning process as it is intended to signalise whether
the test failed or succeeded without deep investigation of
intermediate stages. But not-easy-to-find bugs, which are hard
to analyse without depicted work-flow, are often encountered
in all subsystems of ES as well as the rule base.

II. PROBLEM STATEMENT

In the context of this paper we focus on the validation and
visualisation process of knowledge-based engineering system
for structural optical design[6]. We use the Drools platform
developed by Red Hat company as a rule engine. The idea
is to produce a sufficient way to depict the reasoning process
in a manner which is suitable for testing by a person slightly
related with development process and may become a part of
explanation subsystem in future.

Many of debug techniques do not support a possibility of
sufficient manual review. However, thorough reasoning and
decision testing process is usually related with manual review
by an expert in subject area. This often includes a careful
analysis of large blocks of hard-to-display-on-the-screen data.
Scrolling distracts the attention of the expert from investiga-
tion. Furthermore, a domain expert is not necessarily supposed
to be familiar with the system and specialised software, the
same situation is with our OSYST optical design system.
Thus, visualisation charts must contain as little information and
blocks as possible but enough for inspection. Demonstrative
and readable charts and diagrams make it easier to analyse
work-flow and solution derivation and speed up the process

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

of testing. Decision-support system visualisation must be a
flexible, powerful tool. Moreover, a well-designed visualisation
system for validation and debugging may become a part of
explanation subsystem as well. Thus, a thorough overview of
related works must be conducted and a not-time-consuming-
to-cope-with visualisation mechanism must be produced.

The rest of the paper is organised as follows: Section 3
briefly overviews widely-used approaches in expert system de-
velopment, validation and verification and other works related
to expert system debug and test tools. Section 4 focuses on
description of OSYST system and its components, its imple-
mentation and the improvements made for the convenience
of validation process and system’s feasibility in general and
validation and visualisation techniques, in particular, as well
as experimental evaluation of introduced component.

III.RELATED WORK

A. Validation and Verification Overview

The topic is not new to knowledge-based engineering. ES
testing has been an object of attention as long as decision-
support systems exist. As soon as first expert systems were
developed, validation, testing and debugging became a dis-
cussed research subject. Studies on unit testing can be found
in [7]. But all of them take into consideration only validness
of final solution and sidestep deep analysis of work-flow and
rule implementation by a domain expert.

Development of a knowledge-based system is a continuous
process, including many stages. Thus, validation and verifi-
cation is to be applied not when the system is completed,
but throughout the whole expert system development cycle.
Vanthiene, Mues and Aerts[8] focus on validation from the
very beginning of development cycle, particularly at modelling
stage. They sum up investigation, stating that a lot of anomaly
types can easily be prevented or detected, and, consequently
also corrected in an early stage of development. But the
approach is not acceptable or not of current importance, when
validation was omitted at modelling stage and applied later on
further stages of development.

Preece[9] provides a critical assessment of current state
of the practice in knowledge-based system validation and
verification, including an overview of available evidence of
the efficiency of various validation and verification methods in
real-world knowledge base development projects. The author
offers recommendations for the use of validation and veri-
fication methods and presents overview of other validation
technique studies (the Minnesota study, the SRI study, the
Concordia study, the SAIC study, the Savoie study) and
concludes that the collective knowledge on efficient validation
and visualisation techniques is very limited and is not suitable
for every knowledge-based system.

Further studies concentrate on methods and tools for
decision-process visualisation at the stage of empirical testing
[5], [10].

Baumeister[5] suggests DDTree (derivation/dialog tree) - a
powerful tool for ES validation and visualisation of reasoning.
DDTrees are able to present both final and intermediate
solutions in an easy-to-read intuitive way. Successful test cases
are coloured in green, erroneous cases are red. New test cases

are shadowed until test is launched. Tree-like diagram may be
printed and inspected by an expert in subject area. Branched
structure of chart allows analysing the reason of failure based
on incoming findings. DDTree is a part of KnowWe[11]
platform which is used for building knowledge based systems.
But derivation trees are used only for static analysis. They do
not have a timeline to track order of execution.

Another visualisation method is proposed by Tavana[10].
He offers PNs (Petri Nets) for dynamic system representation
and rule derivation. It overcomes the drawback of derivation
trees and allows analysing system in dynamics.

B. Main Approaches to Validation and Verification

Nowadays knowledge-base engineers mark out a number
of approaches to knowledge-base system validation and verifi-
cation. B. J. Wielinga, A. Th. Schreiber and J. A. Breuker[12]
introduce a so-called KADS approach. In KADS (Knowledge
Analysis and Documentation System), the development cycle
of a knowledge-based system (KBS) is treated as a modelling
process. A KBS is not considered to be a box filled with
expert knowledge, but an operational model which displays
a desirable behaviour in terms of domain area. Authors give
an overview of activities undertaken by engineers to produce
an expert system and illustrate it with examples in the domain
of troubleshooting audio equipment.

KADS was further developed into CommonKADS: a
comprehensive methodology for KBS development. Com-
monKADS postulates are:

1) knowledge engineering is not some kind of ‘mining
from the expert’s head’, but consists of constructing
different aspect models of human knowledge;

2) the knowledge-level principle: in knowledge mod-
elling, first concentrate on the conceptual structure
of knowledge, and leave the programming details for
later;

3) knowledge has a stable internal structure analysable
by distinguishing specific knowledge types and roles.

A paper by Prat, Akoka and Comyn-Wattiau[13] is concerned
with MDA (Model-driven architecture) approach to knowledge
engineering centred on the CommonKADS knowledge model.
They start by grouping elements of the CommonKADS knowl-
edge models into a so-called ”inference groups”, propose and
demonstrate an algorithm that defines these inference groups
automatically and propose a comprehensive CommonKADS
knowledge metamodel.

Another approach to knowledge-based systems’ design and
development is described by Cairo and Guardati[14]. They
introduce a KAMET (Knowledge-acquisition methodology)
II approach, which states that knowledge acquisition (KA)
process is not ”mining from the expert’s head” and produc-
ing rules for building KBS as it used to be 20 years ago
when modern engineering toolkit did not exist and knowledge
acquisition was confused with knowledge elicitation activity.
Nowadays knowledge acquisition process must involve both
dynamic modelling and knowledge generation activities. The
paper presents attempts to build a new KA approach, that
includes all of these ideas. KAMET II brings a number of
new to KBS development processes and tends to transform

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 78 --

tacit knowledge into explicit knowledge.

However, all stated above approaches are largely academic
and theoretical and may cause challenges, especially for those
who have not developed an expert system before. A step-
by-step approach described by Freiling, Alexande, Messick,
Rehfuss and Shulman[15] helps to overcome these challenges
at the beginning of design stage and through the development
process. The authors make two fundamental assumptions:

1) knowledge is more valuable than inference strategies;
2) a knowledge engineering project must provide ad-

equate documentation of its progress; at any stage
in the process knowledge engineers must be able to
show the results of their work.

To reduce the risk of inconsistency of a developed system
authors recommend to follow 6 steps to an expert system
prototype (Fig. 1).

Fig. 1. Six steps to an expert system prototype

One of the keystones stated by authors is choosing the right
tool. A tool is concerned not only with design process, but
with all stages of development lifecycle, including validation
and verification, thus, they mark out four requirements for a
knowledge engineering methodology:

1) the methodology must be simple;
2) the methodology must be gradual;
3) the methodology must aim at getting the knowledge;
4) the methodology must provide measurable mile-

stones.

However, all steps implemented do not guarantee that the sys-
tem is consistent. Proper testing is to be done to ensure that the
system is built right and the right system is built. They suggest

that engineers use testing tools as well as visualisation tools
(CHECKA and PIKA, respectively, in their case). Authors
conclude that the collection of tools and components supports
a step-by-step approach to knowledge engineering, providing
a way to keep making progress on the problem at hand and
using all possible tools is a good practice to fulfil a proper
development and testing cycle.

IV.THE OSYST SYSTEM IMPLEMENTATION AND

IMPROVEMENT

A. Subject Area Overview

The investigations implemented in this work are concen-
trated on knowledge-based optical design system OSYST3.
Main issues of optical systems’ (OS) composition are clas-
sification of elements in OS and analysis of their applicability
in cases concerned. All elements, by their function, are divided
into four groups: basic (B), corrective (C), high-aperture (T)
and wide-angular (Y) elements. The derivation of element
sequence to result the specific optical characteristic is referred
to as structural synthesis. Structural synthesis is the first stage
of automated optical system design.

Since a large number of similar and differing structural
schemas often meets the same technical requirements, a pro-
cess of structural synthesis does not have any determined solu-
tion algorithm. An expert in optics relies on her/his experience
and knowledge in subject area. The more experienced domain
expert is, the more optimal schema is produced.

A great experience and knowledge in domain area, de-
scribed by Rusinov and Livshits allows formalising the process
and, consequently, building up a basis for automated structural
synthesis and OSYST system development. The optical system
calculation brings to ability of engineer to arrange elements of
optical scheme so that an optimal sequence is produced in
order to be able to drive the system to better image quality
without exceeding established geometrical constraints.

Optical system synthesis starts with analysis of techni-
cal requirements which allow to define applicability criteria.
According to requirements an optical schematic diagram is
produced (Fig. 2).

Fig. 2. An example of optical schematic diagram produced by OSYST with
its structural formula

Starting point selection is the determinative stage of design
as final outcome of synthesis becomes less time-consuming as
a result of better convergence of optical system optimisation
process. Starting point misselection brings to running over a
great number of possible combinations of free parameters of

3OSYST repository, URL: https://github.com/ailabitmo/OSYST

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 79 --

the system causing a tiny possibility of optimum solution to
be ever found. In practice, it results in using trial method,
which is time-consuming for both expert and computer. In most
cases such unproductive calculations are unsuccessful. Thus, a
failure in optical system synthesis by an expert system causes
waste of time and overcosts. A rapt attention must be paid to
expert system reliability.

B. Rule Engine Choice

Drools production rule system, using an enhanced im-
plementation of the Rete algorithm, was chosen as a rule
engine. Drools supports the JSR-94 standard for its business
rule engine and enterprise framework for the construction,
maintenance, and enforcement of business policies in an or-
ganisation, application, or service. Drools is considered to be
one of the most developed and supported platforms. It has a
number of knowledge representation ways. The main and the
most wide-spread of them is a decision representation language
(DRL), which is used in production system development.
DRL is tightly integrated with Java language. Furthermore,
the platform enables to write DSL constructions to make
rules more vivid and easy-to-understand for domain experts.
A detailed description of Drools is redundant as the platform
is well-documented, thus, only features significant for the
OSYST system are stated below.

Drools has an advanced decision engine that supports both
forward and backward chaining that allows wider range of
abilities at design stage (a forward chaining is used in our
expert system as it is acceptable when an object is to be syn-
thesised based on the facts). The last but not the least, Drools
platform has database design toolkit referred to as Guvnor,
which is not included in most of other platforms. Guvnor
combines all essential tools for knowledge-based engineering,
such as rule editor, rule storage, test tools, decision tables
and so forth. Furthermore, the described platform has a user-
friendly web-interface. Drools is cross-platform, its installation
process is not time-consuming, knowledge bases can be easily
exported and imported, which results in better portability. All
facts considered, Drools platform has many advantages over
the other platforms and meets our needs.

C. System architecture

The OSYST expert system consists of four fundamen-
tal components: a knowledge base, implemented on Drools
platform, which is described before in this paper; a server
component developed using Play! Framework4; a client com-
ponent, represented by a browser user interface and a database
to store user accounts and saved work (Fig. 3). Logging
for visualisation process takes place on server side, logging
process is described further in details. Knowledge- and rule
bases are developed, using built-in tools of Guvnor. The
platform offers a fine versioning mechanism which is very
desirable, especially during development and testing stages.
Rules set the correspondence between technical and general
characteristics. The example of such rule in DRL language
is represented in Alg. 1. It sets the correspondence between
”technical” focal length and ”generalised” or ”formalised” F.

4Play! Framework, URL:http://www.playframework.com

Fig. 3. The OSYST system architecture. Logging for VODRE tool is
indicated by curvy line.

Algorithm 1 An example of rule in DRL language

rule F1
when
class : Classification()
Requirements(focalLength > 50 < 100)

then
$class.setF (1);

end

Drools Guvnor publishes a web-service that is used as a
RESTful interface for connection to knowledge base. As it was
mentioned before, Drools platform is tightly integrated with
Java language (in fact it is developed using Java language),
therefore, Java platform for server application was chosen.
Server component is intended to accept data inserted by user,
process it according to knowledge base stored in Guvnor and
give the result back to user by client’s request using Ajax,
which results in quicker response (reaction) of the system.

The choice of server framework is concerned with
time consumption. Play framework allows developing soft-
ware quickly, following the Convention over Configuration
paradigm, that tends to minimise the number of decisions made
by developer by simplifying configuration process, granting
finished modules and so forth. Furthermore, it supports MVC
(Model-View-Control) pattern that allows developing a server
and a client component in the same development cycle.

Client pages are developed, using standard and widely-
spread tools and languages (HTML, CSS, JavaScript). All
structural synthesis drawing functions, including visualisation,
are implemented with a help of KineticJS Canvas JavaScript5

framework that includes all basic primitives and canvas func-
tions. User accounts are stored in MySQL database.

D. Validation and Verification

A variety of tools were used for expert system validation
and verification: unit testing, integrational testing, systems
testing and database testing. Unit testing was applied to all
components of the system in client application as well as
in server (Jasmine6 and JUnit. A manual alpha-testing was
conducted by potential users of the system to check appli-
cation consistence. However, till now all manual tests were
conducted by comparing schema synthesised based on inserted
parameters with expected schema visually. A component for
rule execution visualisation was developed to simplify the
process of manual testing. Data about facts inserted and rules
executed is collected by AgendaEventListener and Working
MemoryEventListener from Knowledge API7. Collected logs
are received by client, then analysed and represented in debug
(before this investigation) and in visualisation (now) windows,
which lets an alpha-tester have both schema and rule execution

5KineticJS, URL:http://kineticjs.com
6Jasmine Framework, URL:http://jasmine.github.io
7JBoss Knowledge API, URL:http://docs.jboss.org/jbpm/v5.1/javadocs

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 80 --

order for analysis in front of his/her eyes (Fig. 4). Visualisation
process is described in details in next subsection.

Fig. 4. Testing tools after visualisation component introduction

E. Visualisation Mechanism and Diagram Elements

Visualisation process requires data about facts provided
and rules being triggered in working memory as well as the
order of rule invocation. For that purpose a logging mechanism
for connection between rule engine and server was developed
based on standard JBoss knowledge tools. After data insertion
at client side a request is sent to server and synthesis process
listened by visualisation (rule invocation) logger starts. A
diagram of rule invocation logger is displayed in Fig. 5.
RuleRunner class handles a stateless session with knowl-
edge base, which is listened by WorkingMemoryEventListener.
Thus, listening process is parallel to optical schema generation,
and logs received include all steps of synthesis. Listener class
implements methods for entity insertion, update and retrac-
tion (objectInserted(), objectUpdated() and objectRetracted()
respectively) which handle information on events in working
memory. As soon as knowledge session is finished, synthesised
schema formulae are returned to client together with synthesis
logs.

All logs received are parsed on client side and visualised.
Log parsing is accomplished by parseRules() function writ-
ten in JavaScript synthesis module. Generated schemas are
presented to user and two windows (debug and visualisation)
are displayed. Windows are used for debug log output and
visualisation chart drawn on canvas, respectively.

Two types of identities are used in reasoning process of the
synthesis: these are rules and facts. Both rules and facts can
be added to working memory, removed from it or changed
(updated). A fact (or a set of facts) make rules to be fired.
Based on the above, a set of visualisation diagram elements
was worked out. All diagram elements are represented in

Fig. 5. A class diagram of rule invocation logger (only logger package classes
are displayed, others are omitted for the reason of diagram complexity)

Fig. 6. Rules are represented by parallelograms (a) with a
name of the rule inside; facts are represented by rectangles
(b), containing facts’ names (values); operations on facts are
displayed by horizontal arrows directed to left side (c), right
side (d) and both directions (e) for adding, removing or
changing a rule in working memory, respectively; vertical bent
arrows (g) are used between rules and facts, operated by the
rule. Elements are aligned along a timeline (f), represented by
a vertical line, from top to bottom.

Thus, a validation process after introduction of visualisa-
tion component should look as follows:

1) an alpha-tester provides system with input data;
2) as soon as input is finished, a request is sent to server;
3) schemas are synthesised on the server, logs of rules’

invocation are collected in parallel;
4) optical formulae of synthesised schemas and logs are

returned from the server;
5) schemas are drawn in web-browser client of OSYST;
6) synthesis process visualisation diagram is built based

on rule invocation logs;
7) rules and rule execution order is analysed with a help

of visualisation chart (a more time-consuming manual
comparation of synthesised schema with expected
schema, which had to be calculated in advance, was
required before).

Fig. 6. Elements of workflow diagram

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 81 --

F. Experimental Evaluation

For the sake of reliability and robustness of visualisation
component manual analyses of schemas generated and rules
triggered was conducted. Manual review showed that the rule
implementation order displayed on visualisation chart corre-
sponds the order of rules to build schemas, and the schemas,
in turn, appear to be valid for the technical requirements and
data provided. But after a thorough testing of visualisation
mechanism charts are to replace manual inspection of schemas
with a simple check of rule implementation order based on the
visualisation.

During experimental evaluation process the system was
provided with sets of input optical parameters, for which pos-
sible synthesis results were already known, to make sure that
expected schemas are generated and visualisation component
displays charts with correct rule invocation order to get these
structural schemas. The complete process of evaluation for one
of the input sets is described next.

One of the synthesis processes is presented here as an
example. An input form of photographic lens subsystem (Fig.
7) was filled with an initial set of valid test data (Table I)
and a request to server was sent by ”Synthesis” button. Based
on facts inserted, a total of 21 rules were triggered (12 from
generation package, 6 from corrective package and 1 from
basic, fast and wideangular packages). A set of 12 structural
schemas was produced (Fig. 8).

Fig. 7. Experimental evaluation. Test initial data set.

TABLE I. INITIAL DATA SET FOR EVALUATION

Aperture speed: 1.8
Angular field: 84◦

Focal length: 4.5mm
Image quality: Geometrically limited
Back focal distance: 1mm
Entrance pupil position: Forward
Spectral range: 450..600nm

The schemas produced appear to be valid for the technical

Fig. 8. Produces schemas. Not all of 12 schemas are presented.

requirements provided and rule invocation order, seen in visu-
alisation chart, in turn, is correct (Fig. 9). Other experiments
with structural schema synthesis and visualisation showed
satisfactory results and feasibility of the component, as well.

G. Examples of Visualisation

For testing and clearness purposes a synthesis result for
another sets of input values was visualised. The following
example displays a synthesis process for fake random input
not related with real-world application in order to simplify
produced diagram so that the visualisation chart may be
presented full-sized and uncut. An initial set of input data
presented in Table II was chosen as it satisfies simplicity
requirements. Based on test initial data a diagram was built
(Fig. 10). As one may notice, first rules are displayed ordered
by invocation time. Then, facts are displayed in ascending
order by insertion time. Finally, a relationship between rules
and facts is drawn (arcs with arrows).

TABLE II. INITIAL DATA SET FOR SIMPLIFIED DIAGRAM EXAMPLE

Aperture speed: 1
Angular field: 2◦

Focal length: 1mm
Image quality: Geometrically limited
Back focal distance: 1mm
Entrance pupil position: Forward
Spectral range: 1..2nm

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 82 --

Fig. 9. Experimental evaluation. Visualisation of synthesis based on real-
world parameters (cut for size reasons)

V. CONCLUSION & FUTURE WORK

Expert systems are complex artifacts that are difficult to
develop and test. This paper presented technical aspects of
OSYST, an environment for automated structural synthesis
of optical systems (photo-objectives), and the process of its
validation and verification, and reasoning visualisation in par-
ticular. The analysis of the system has shown a drawback of
validation process, which was overcome by introducing a visu-
alisation component for tracking working memory processes,
mainly rule invocation and operations on facts.

In this study, we showed that a new visualisation com-
ponent gives an expert another opportunity of inspection of
knowledge engine workflow. The more ways to assess rule
executions alpha-tester has, the more thorough and efficient
validation process becomes. Concentrating on rule firing or-
der rather than comparing synthesised schema with expected
schema simplifies validation and verification in general.

Despite the fact that the visualisation component designed
is applicable for validation purposes, further revision is de-
sirable. A scaling mechanism is needed to make it easier to
review large diagrams, and more information on rules fired
would be an advantage, too. More research and development
is necessary to expand functionality of the component to make
it a powerful debugging tool.

Future work should be focused on improvement of expert
system, in general, and improvement and introduction of new
components and tools, in particular.

Fig. 10. Example 1: visualisation of simplified synthesis based on not real-
world data

REFERENCES

[1] S.H. Liao, “Expert system methodologies and applicationsa decade
review from 1995 to 2004.“, Expert systems with applications, vol.28(1),
2005, pp. 93-103

[2] M. Huettig, G. Busher, T. Menzel, W. Scheppach, F. Puppe, H.P.
Buscher, “A Diagnostic Expert System for Structured Reports, Quality
Assessment, and Training of Residents in Sonograph“, Medizinische
Klinik, vol.99, 2004, pp. 117-122

[3] T. Padma, P. Balasubramanie, “Knowledge based decision support sys-
tem to assist work-related risk analysis in musculoskeletal disorder“,
Knowledge-Based Systems, vol.22, 2009, pp. 72-78

[4] R.K. Lindsay, B.G. Buchanan, E.A. Feigenbaum, J. Lederbeg, “DEN-
DRAL: a case study of the first expert system for scientific hypothesis
formation“, Artificial Intelligence, vol.61, 1993, pp. 209-261

[5] J. Baumeister, “Advanced Empirical Testing“, Knowledge-Based Systems,

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 83 --

vol.24(1), 2011, pp. 83-94

[6] D. Mouromtsev, I. Livshits, M. Kolchin, “Knowledge based engineering
system for structural optical design“, Frontiers in Artificial Intelligence
and Applications, vol.246, 2012, pp. 254-272

[7] R. Knauf, A. J. Gonzalez, K. P. Jantke, “Validating rule-based systems:
a complete methodology“, in Proc. IEEE SMC’99 Conf., 1999, pp. 744-
749

[8] J. Vanthienen, C. Mues, A. Aerts, “An illustration of verificat on and
validation in the modelling phase of KBS development“, Data and
Knowledge Engineering, vol.27, 1998, pp. 337-352

[9] A. Preece, Evaluating Verification and Validation Methods in Knowl-
edge Engineering, in R Roy (ed), Micro-Level Knowledge Management,
Morgan-Kaufman, 2001, pp. 123-145

[10] M. Tavana, “Knowledge-Based Expert System Development and Valida-
tion with Petri Nets“, Journal of Information & Knowledge Management,
vol.7(1), 2008, pp. 3746

[11] J. Baumeister, J. Reutelshoefer, F. Puppe, “KnowWe: a Semantic Wiki
for knowledge engineering“, Applied Intelligence, vol.35(3), 2011, pp.
323-344

[12] B. J. Wielinga, A. Th. Schreiber, J. A. Breuker, “KADS: a modelling
approach to knowledge engineering“, Knowledge Acquisition - Special
issue on the KADS approach to knowledge engineering, vol.4, 1992, pp.
5-53

[13] N. Prat, J. Akoka, I. Comyn-Wattiau, “An MDA approach to knowl-
edge engineering“, Expert Systems with Applications: An International
Journal, vol.39(12), 2012, pp. 10420-10437

[14] O. Cair, S. Guardati, “The KAMET II methodology: Knowledge acqui-
sition, knowledge modeling and knowledge generation“, Expert Systems
with Applications: An International Journal, vol.39(9), 2012, pp. 8108-
8114

[15] M. Freiling, J. Alexander, S. Messick, S. Rehfuss, S. Shulman, “Start-
ing a Knowledge Engineering Project: A Step-by-Step Approach“, AI
Magazine, vol.6(3), 1985

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 84 --

