
The Analytical Model of Distributed Interrupt 
Mechanism in SpaceWire Network 

Liudmila Koblyakova 
SUAI 

Saint-Petersburg, Russia 
liudmila.koblyakova@guap.ru 

 
Abstract—The distributed interrupt mechanism is 

intended for reliable and low-latency transmission of system 
signals with acknowledge in SpaceWire networks. Important 
tasks are rigorous proof of the distributed interrupt 
mechanism properties and time characteristics calculation. 
For these purpose the analytical model has built, which 
describes the distributed interrupt mechanism in terms of 
graph theory. The article shows basic data, assumptions and 
notations for graph theory based model building, describes 
distributed interrupt propagation algorithm in terms of 
graph. Here is proved the correctness of the algorithm, i.e.: 
distributed interrupts/acknowledges wave propagation time is 
finitely; the distributed interrupts/acknowledges wave 
propagates to all nodes of a graph. The assertions are proved: 
acknowledge wave to the interrupt does not cross in time with 
distributed interrupt wave if the interrupt processing time is 
greater than the maximum interrupt propagation time; the 
next interrupt wave does not cross with acknowledge wave to 
the previous interrupt if the time interval between 
acknowledge receiving and next interrupt generation is 
greater than the maximum acknowledge wave propagation 
time. Here are provides algorithm consequence that Interrupt-
code (Acknowledge-code) from source node (handler node) to 
all other graph nodes  propagates by the shortest path and 
forms oriented covering tree. The necessity of the distributed 
Interrupt mechanism parameters restrictions determined 
looping problem in networks with loops and provides a 
solution to this problem, which makes changes to the 
algorithm and prove the correctness of the changes.   

I. INTRODUCTION 
Standard SpaceWire [1] for onboard communication 

networks integrates the data and control information 
transmission. According to consolidated set of requirements 
for SpaceWire-RT from European and Russian industry [2] 
the important task for onboard distributed real-time systems 
is single a signals transmission with acknowledge to inform 
devices about system critical events in real-time, such as 
equipment failure or readiness to some action. For this 
purpose, the distributed interrupt mechanism is included to 
the second edition of SpaceWire standard. Hard real-time 
signalling imposes strict signal delivery constraints and 
requires high reliability of signal delivery [3], so the strict 
proof of the distributed interrupt mechanism properties is 
also important task.  

The Distributed Interrupt mechanism uses broadcast 
distribution of hard real-time signals providing ultra-low 
delivery latency and high reliability. 

A Distributed Interrupt code consists of the 4-bit 
SpaceWire Escape character followed by a 10-bit 
SpaceWire data character; the total size of the distributed 
Interrupt code is 14 bits. Distributed Interrupt codes take 
priority over SpaceWire FCT characters, data characters 
and NULL control codes. Therefore, the transmission of 
Interrupt signals is not affected by data packets flowing 
through the same links. As a SpaceWire control code, each 
14-bit Interrupt code carries 8-bit data field which, in turn, 
contain 3-bit code identifier and 5-bit Interrupt identifier. 
The 3-bit code identifier is used to distinguish Interrupt 
codes from other SpaceWire control codes (e.g. Time-
codes) as well as to determine the type of Interrupt code. 
There are two types of Distributed Interrupt codes. Each 
Interrupt request (Interrupt code) has a particular 5-bit 
Interrupt identifier that is used to distinguish this request 
from other Interrupt requests in the network. Therefore, in a 
network there may be up to 32 different Interrupt requests 
with identifiers from 0 to 31. It is assumed that for any 
Interrupt request in the network there is at least one node 
that is assigned to receive and process the code. Such node 
is called an Interrupt handler. When an Interrupt handler 
receives an Interrupt request which this handler is assigned 
to process, it may issue a confirmation code that is called an 
Interrupt acknowledgment, which is another type of 
Interrupt code. Each Interrupt acknowledgment has the 
same Interrupt identifier as the correspondent Interrupt 
request. 

Broadcast distribution of Interrupt codes allows simple 
configuration of the network that does not require routing 
tables in switches. However, broadcast distribution in 
networks with circular connections may lead to repeated 
propagation of Interrupt codes. So as to overcome the 
problem each SpaceWire switch or node has a 32-bit 
Interrupt Source Register (ISR). Each i-th ISR bit 
corresponds to the Interrupt identifier with the same 
number. When a node issues an Interrupt request or a node 
or a switch receives an Interrupt request, the correspondent 

_______________________________________________________PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 189 ----------------------------------------------------------------------------



bit of the ISR must be checked. If the bit is already set to 
‘1’, it means that the incoming Interrupt request is invalid 
and must not be forwarded or processed. Otherwise, if the 
bit is ‘0’, it is switched to ‘1’ and the correspondent 
Interrupt request is considered to be valid for processing in 
the node and forwarding to all the output ports of the 

switch. On the contrary, an incoming Interrupt 
acknowledgment code is assumed to be valid if the 
correspondent ISR bit is ‘1’ and invalid otherwise. The 
example of Interrupts and Acknowledge codes is shown in 
Fig. 1. 

 

Fig.  1. Example of the Interrupt and Acknowledge codes propagation 

To prove the correctness of work of the distributed 
interrupt mechanism and to calculate a time characteristics 
the analytical model was built, it describes the distributed 
interrupt propagation mechanism in terms of graph theory. 
The distributed interrupt mechanism in detail with time 
characteristics, timeouts and errors recovery described in 
previous papers [4-7], which use the results of the 
analytical model, but the following proofs and details of 
analytical model was out of their scope. So, in this paper, 
the description of this analytical model provided and their 
properties have proved. 

II. INPUT DATA FOR DISTRIBUTED INTERRUPT ANALYTICAL 
MODEL BUILDING  

A. Network model description 
For description of the distributed interrupt mechanism a 

graph theory is used,[8, 9]. Let represent a network in a 
form of finite graph G(V, E). Graph’s edges are network 
links. Graph’s nodes are network nodes and routers. 

The aim is to build such analytical model and derive 
such formulas, which will be valid for any network 
topology with known following parameters (Table I):   

Let make the following assumptions: 

� the graph is connected 
� terminal nodes have only one input/output port, so end 

nodes of a graph correspond to terminal network 
nodes. The nodes with degree greater than one 
correspond to routers  

TABLE I. NETWORK PARAMETERS 

Designation Description 

D Number of edges in a shortest path between two 
most distant nodes.  

PLen Number of edges in a longest simple path 
between two most distant nodes (graph diameter) 

Tbit Single bit transmission time over channel 

NCC Number of bit in control-code symbol 

Twtc Code propagation time throw a router without 
delay to wait for the previous code transmission  

 
� network consist of minimum two nodes, one of this 

correspond to network node, i.e. 1D � . �

Definition. Wave propagation control code will be call 
the process of code’s propagation from the source code to 
all the other nodes in the network.  

In the distributed interrupt mechanism could be up to 
2 ICBN  different interrupt types, where  ICBN  � number of 
bit for Interrupt/Acknowledge code (in symbol on symbol 
level) is a system parameter. For every interrupts type there 
is only one source, and every interrupt source could send 
their code independent from other sources (in parallel). 
Similarly, there is the same number of interrupt handlers 
(acknowledges source), that also work separately from each 
other. Therefore, in the system at the same time could 
propagate up to 2 ICBN  interrupt/acknowledge wave.  

_______________________________________________________PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 190 ----------------------------------------------------------------------------



Every Acknowledge-code propagates with priority next 
after time-code, and Interrupt-codes propagate with next 
after Acknowledge-code priority. 

Description of a every such code propagation process 
separately is similar to the shortest path finding algorithm 
Dijkstra, and traverse the graph in width.      

B. Notation system for describing the distributed interrupt 
mechanism model using graph theory  

Marking graph: 

For each graph node associate pair of numbers v(x, y), 
where {0,1}� � , and it is a flag of permission/prohibition 
of distributed interrupt code or acknowledge code 
propagation; y is a value of real (astronomical) time when 
the last interrupt/acknowledge code was accepted. Time is 
measured in user-defined units, for example in ns). For 
designation of undefined time, we use symbol «�».         

For each edge associate a number – weight �(vi, vj), 
which depend on link speed and means real (astronomical) 
control code transmitting time over link between two nodes 
vi and vj.  

  Introduce notations and parameters in Table II. 
TABLE II. NOTATIONS AND PARAMETERS FOR DISTRIBUTED INTERRUPT 

MECHANISM DESCRIPTION 

Designation Description 

FCI/FCH 

 

Current interrupt/acknowledge wave front, consist of 
nodes pairs (vi(x, y), vj(x, y)). Each pair shows that 
interrupt/acknowledge-code propagates to node vj(x, y) 
from node vi(x, y). If  vj is end node (interrupt source or 
handler), than instead first node use «-» 

Ft Auxiliary set, elements similar to   FCI/FCH set elements 
and shows that interrupt/acknowledge-code has come to 
node vj(x, y) from node vi(x, y), but not checked yet, i.e. 
unknown whether this code will pass further or not 

FNI / FNH New interrupt/acknowledge wave front. Elements 
similar to FCI/FCH set elements. Every pair shows that 
interrupt/acknowledge-code come to node vj(x, y) from 
vi(x, y), checked and wait further transmission. 

DI / DH Distance sets from source/handler node. Set’s element 
d(s, (vi, vj)) shows weighted distance (time, edge’s 
weight sum in path) from interrupt/acknowledge source 
node s to node vj, and A path from node s to vj contain 
the edge (vi, vj). For short writes d(vi, vj) 

TSI / TSH Interrupt/acknowledge sending time. If time undefined 
the symbol «� » in used 

tH Interrupt processing time (time from interrupt receiving 
to acknowledge sending). It’s distributed interrupt 
mechanism parameter.  

tG Time period from acknowledge-code receiving time by 
source node to new interrupt-code send time to a 
network. It’s distributed interrupt mechanism 
parameter.  

III. THE ALGORITHM OF INTERRUPT AND ACKNOWLEDGE 
CODES PROPAGATION 

A. The algorithm in terms of graph theory  
Describe the algorithm in terms of graph theory using 

notations. 

Algorithm 1 The algorithm of the distributed Interrupts 
mechanism

Step 1. Initialization  

All nodes mark as (0, � ). Sets FCI, F�H, FNI, FNH, Ft  
are empty, FCI = { }, FCH = { }, FNI = { }, FNH = { }, Ft = 
{ }. System time T=0. TSI = 0. TSH = �  

Step 2. Start wave propagation Interrupt. Source node 
- vs(0, � ), change its mark on vs(1,�). Source node 
include to set FNI = {(-, vs(1,T))}.  

Step 2.1.  

1) For every pair (vi(x, y), vj(x, y)) from the set FNI 
review all adjacent to node vj(x, y) nodes 
excluding node vi(x, y).  

2) For every adjacent node vk(x, y) calculate 
distance to it d(vj, vk)= (yj - ys)+c(vj, vk) from the 
source node and add it to set DI.   

3) Add node vk to set FCI in pair with node vj(x, y). 
All nodes are removed from FNI. 

Step 2.2.   

1) Find in set FCI node which has minimal distance 
d(vj, vk) and first part of mark is zero (xk = 0), 
and move to set Ft all nodes with distance less or 
equal to distance to found node. If the set FCI 
does not contain nodes with zero mark of first 
part than all nodes move to set Ft.  

2) All DI set’s elements with distance less and 
equal to distance to found node are deleted.  

3) All nodes from Ft set with zero mark of first part 
add to FNI set.  

4) System time is T = ys + d(vj, vk), if there is node 
with zero mark first part, or T = ys + max{DI} 
(maximal distance in  DI set.  

5) For each node’s pair (vi(x, y), vj(x, y)) from Ft set 
the mark of vj node change to (1, T). 

6) All nodes from Ft set are removed.  

Step 2.3.  

Check the FCI set and mark handler node vh(x, y). 
The following warrants are possible: 

1) The FCI set is not empty (this means that 
interrupt wave has not finish its propagation), 

_______________________________________________________PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 191 ----------------------------------------------------------------------------



Algorithm 1 The algorithm of the distributed Interrupts 
mechanism

node vh(x, y) has in label x = 0, so the interrupt 
code has not reach to handler node yet. Go to 
Step 2.1 

2) The FCI set is not empty (this means that 
interrupt wave has not finish its propagation), 
node vh(x, y) has in label x = 1, so interrupt code 
has reached handler node. If TSH = -1, than 
define acknowledge code sending time as TSH = 
yh+tH. Go to Step 2.1. 

3) The FCI set is empty (this means that interrupt 
wave has finished its propagation), node vh(x, y) 
has in label x = 1, so interrupt code has reached 
handler node. If TSH = � , than define 
acknowledge code sending time as TSH = yh+tH. 
Go to Step 3. 

4) The FCI set is empty, node vh(x, y) has in label x 
= 0. This means that there is no handler node in 
the system or graph is disconnected. Go to 
Step 6. 

Step 3. TSI = � . Interrupt code processing finish 
waiting: T = TSH 

Step 4. Start wave propagation acknowledges. 
Handler node (source of acknowledges) - vh(1,�), change 
its label to vs(0,�). Include handler node to FNH = {(-, 
vh(0,�))} set.  

Step 4.1.   
1) For every pair (vi(x, y), vj(x, y)) from the FNH set 

review all nodes adjacent to node vj(x, y) 
excluding node vi(x, y).  

2) For every adjacent node vk(x, y) calculate the 
distance to it from the handler node: 
d(vj, vk)= (yj - ys)+c(vj, vk),  and add it to DH set.   

3) Add vk node to FCH set in pair with vj(x, y) node. 
all nodes removed from the FNI set. 

Step 4.2.   

1) Find in FCH set node with minimal distance d(vj, 
vk), which has first label part equal to one and 
move to Ft set all nodes with distance less or 
equal to distance to found node. If the FCH set 
does not contain nodes with first label part equal 
to one, than all nodes move to the Ft set.  

2) All elements with distance less and equal to 
distance to found node are removed from the DH 
set.  

3) All elements from Ft with first label part equal 
to one are added to FNH set.  

4) System time T = ys + d(vj, vk), if there is node  

Algorithm 1 The algorithm of the distributed Interrupts 
mechanism

with label equal to one, or T = ys +  max(DH) 
(maximal distance from DH set).  

5) For every pair of nodes (vi(x, y), vj(x, y)) from 
the Ft set for node vj change the label to(0, T).  

6) All nodes from the Ft set are removed.  

Step 4.3.  

Check the FCH set and source node label  vs(x, y). 
The following variants are possible: 

1) The FCH set is not empty (this means that 
acknowledge code wave has not finish its 
propagation), node vs(x, y) has in label x = 1, so 
acknowledge code has not reached source node. Go to 
Step 4.1. 

2) The FCH set is not empty (this means that 
acknowledge code wave has not finish its 
propagation), node vs(x, y) has in label xs = 0, so 
acknowledge code has reached source node.  If TSI 
=� , than define interrupt code sending time as 
TSI = �+tg.. Go to Step 4.1. 

3) The FCH set is empty (this means that 
acknowledge code wave has finished its propagation), 
node vs(x, y) has in label x = 0, so acknowledge code 
has reached source node. If TSI = � , than define next 
interrupt code sending time as TSI = �+tg. Go to 
Step 5. 

4) The FCH set is empty, node vs(x, y) has in label x 
= 0. This is unreachable state. Go to Step 6. 

Step 5. Acknowledge code propagation wave has 
finished. TSH = � . The generation of the next interrupt 
code with the same type is waiting T = TSI. Go to Step 2. 

Step 6. Exit

B. Proof the algorithm correctness 
Subsequent execution of Step2-Step5 will call main 

iteration. It corresponds to interrupt code has been: 
generated, sent to network, received by all nodes, 
processed, after than acknowledge has been generated, send 
to network, received by all nodes including source. Cycled 
execution of Step 2 – Step2.3 corresponds to interrupt code 
wave propagation from the source to all other nodes. 
Cycled execution of Step 4 – Step 4.3 corresponds to 
acknowledge code wave propagation from handler to all 
other nodes. Prove that: 

1) Step 3 reachable, Step 5 reachable, i.e. 
interrupt/acknowledge wave propagation time is 
finitely. 

_______________________________________________________PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 192 ----------------------------------------------------------------------------



2) Step 2.3.4 and Step 4.3.4 unreachable, i.e. 
interrupt/acknowledge code wave propagates to all 
graph nodes. 

Proof. In the beginning of Step 2 all nodes have the first 
part label value x = 0, that correspond to interrupt code is 
allowed to be passed throw any node. Further, at the every 
repeat of Step 2.2.5 interrupt code reaches to one or several 
nodes, so at every step the number of nodes to which the 

code has not yet reached, reduced. Due to the finiteness of 
the graph ( see 2.A) for finishing the interrupt code wave 
propagation required the finite number of steps. The 
acknowledge wave propagates similarly, except label value 
changes from 1 to 0 and the reducing the number of nodes, 
to which acknowledge code has not reached yet, takes place 
in Step 4.2.4. So the first part is proved.      

 

 
Fig. 2. Fragment of algorithm work 

In Step 2.1.1 (4.1.1) all adjacent nodes for nodes, to 
which interrupt/acknowledge code has already reached, are 
reviewed, and to FCI/FCH set the nodes added, which 
interrupt/acknowledge code has already sent to.  

In step 2.2.2. (4.2.2) from the FCI/FCH set the nodes are 
removed, which code reached to and its first part label 
changed to 1 (0). Since the number of steps is finitely, than 
for finite number of steps will occur situation when the 
graph will not contain the nodes, which will be possible to 
add to FCI/FCH set. Next, as at every repeat of Step 2.2.2 
(4.2.2), the number of nodes in set FCI/FCH is reduced, then 
for the finite number of steps FCI/FCH set becomes empty, 
that means that interrupt/acknowledge code has reached to 
all nodes. If some node will have first part label equal to 0 
(1) that will mean that graph is disconnected, which 
contradict to par.2.A. So the second part is proved.    

C.  Proposition about interrupt and acknowledge wave 
cross      

As was said earlier, after interrupt wave follows 
acknowledge wave, and after could follow interrupt wave 
again, and so on. Let prove the next proposition. 

Proposition: 

1) Acknowledge wave to the interrupt does not cross 
with the interrupt wave in time, if time of interrupt 
processing tH will be more than maximum 
interrupt processing time.  

2) The next interrupt wave does not cross with wave 
of acknowledge codes to previous interrupt, if time 
interval between acknowledge received and next 
interrupt generated tg will be more than maximum 
acknowledge code wave propagation time.  

_______________________________________________________PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 193 ----------------------------------------------------------------------------



Proof. Consider two points of real time. First point, in 
the beginning of Step 3, when interrupt wave has finished 
its propagation. The value of system time (1)   

( , )s j kT y d v v� �  (1)

Where vk is the last node, which the code of current 
wave reached to, that is time d(vj, vk) correspond to 
interrupt wave propagation time. Second point of time 
correspond to acknowledge code generation time (2): 

SH h HT y t� � , (2)

Where yh is time when handler node has received 
interrupt code, obvious that  

s h ky y y	 
  (3)

Waves does not cross and time value is increasing, so the 
following is true: 

( , )s j k h Hy d v v y t� 	 �  (4)

( , ) ( , )s j k s i h Hy d v v y d v v t� 	 � �  (5)

( , ) ( , )i h H j kd v v t d v v� �  (6)

( , ) ( , )H j k i ht d v v d v v� �  (7)

Based on Step 2.2.4-Step 2.2.4: 

( , )j k k sd v v y y� � , (8)

Thus, have 

( ) ( )H k s h st y y y y� � � �  (9)

H k ht y y� �  (10)

Due to inequality 3, get: 

H k ht y y� � , (11)

That is to guarantee that waves does not cross, interrupt 
processing time Ht  shell be more than interrupt wave 
propagation time, which required in first part. The proof of 
the second part is similar, because the process of interrupt 
and acknowledge waves is equal exclude the first part label 
value, which is not involved in the proof. So the 
proposition is proved.   

D. Consequence of the algorithm 
Let prove the consequence. Interrupt (acknowledge) 

code from the source node vs (handler node vh) to all other 
network nodes propagates by the shortest path and forms 
the oriented covering tree.  

The proof. Consider the next iteration of 
interrupt/acknowledge codes wave propagation.  Every 
times at the performing of Step 2.2.1- Step 2.2.3 (Step 4.2.1 

– Step 4.2.3), to the FNI (FNH) set the pair of nodes are 
added, which the minimal distanced path has found for, that 
is the nodes is defined, which the interrupt (acknowledge) 
code has reached to. The source node vs(vh), which ascribe 
to the minimal distance, is added to this set first. Further, 
for this node all adjacent nodes (the weight of incident to 
node vs (vh) edges) are reviewed. So the following is added 
to the pair of node (vs (vh), vk), where vk has minimal 
distance (weight) (Step 2.2.1, Step 4.2.1) from the source 
(handler), which is equal to edge weight �(vs(vh), vk) over 
which code has come (Step 2.1.2, Step 4.1.2). By induction, 
at every Step 2.2 (4.2) will be defined and added to the FNI 
(FNH) set the new edge (vk, vn) by which the interrupt 
(acknowledge) code has reached the node vn. And, the 
distance to vk had been found at the previous step and it is 
minimal, also the node is chosen based on a fact that from 
all nodes which interrupt/acknowledge code has not 
reached yet, to this node the distance is minimal. So the 
code has reached to node vn by the shortest path. If there are 
several paths to the node, then each other will not be 
shortest (that is if other path will be shorter than founded 
path, that will be contradicted to Step 2.2.1 (4.2.1)). The 
interrupt (acknowledge) code, reached to the node by the 
not shortest path, will not propagate further, that is: at Step 
2.2.5 (4.2.5) the first part label value has changed when the 
interrupt (acknowledge) code reached to the node in first 
time by the shortest path; and by condition at Step 2.2.1 
(4.2.1) the node with the first part label value is not equaled 
to zero, has not choose to the further transmission, that is 
repeatedly received code is ignored. So the node vn was 
chosen arbitrarily, so we could conclude that interrupt 
(acknowledge) code to any node comes by the shortest path 
and repeatedly comes codes are ignored. That is required to 
prove in the first part.  

The edges (nodes pairs included to FNI and FNH sets) 
forms the orienting shorter paths trees with root vs for 
interrupt codes and vh for interrupt acknowledges, that is at 
every repeating of Step 2.2 and 4.2 the new edge and node 
are added, which correspond to minimal distance, so the 
algorithm’s work at every iteration can be regarded as 
continuous building shorter paths trees of the interrupts 
propagation in the first part iteration and acknowledges 
propagation at the second part. The Step 2 (4) will be 
finished when all nodes will be added to the FNI (FNH) set 
and built oriented tree will contain all graph nodes, so we 
get the oriented covering tree that is required to prove in the 
second part of consequence.   

Oriented covering tree or the shorter paths tree shows all 
shorter paths of interrupt/acknowledge codes propagation 
from the source node (handler node) which is the root of 
tree, to all other graph nodes. The every path    length, 
which corresponds to interrupt/acknowledge code time 
propagation, is a sum of edge weight contained in the path. 
Source node (tree root) and leaves trees correspond to 

_______________________________________________________PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 194 ----------------------------------------------------------------------------



network terminal nodes. The number of tree levels is equal 
to parameter D. 

IV. THE NECESSITY OF THE DISTRIBUTED INTERRUPT 
MECHANISM PARAMETERS RESTRICTIONS  

A. The looping problem determining in the network with 
cycles  

Earlier the proposition was proved that for interrupt and 
acknowledge waves does not cross, the parameters value tG 
and tH should be more than interrupt/acknowledge 
propagation time. Let us justify the need of that the waves 

of the interrupts and acknowledges should not cross in 
time.  

Obvious that in networks without cycles (trees) there is 
only one path for code propagation from the source to every 
other node, so the looping is not possible. In the cycled 
network there are several path  between nodes, so interrupt 
and acknowledges wave imposition may cause the looping 
problem. Lets consider the next example. Chouse the graph 
as in the first example and look at another part of time. 
Take tH = 1. In the Fig. 3 the fragment of algorithm work is 
shown before the problem situation is appear. In the Fig.4 
the looping problem is shown.  

 
Fig.  3. Algorithm work before looping problem 

 

_______________________________________________________PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 195 ----------------------------------------------------------------------------



The picture shows that in time T = 6 into the handler 
node v15 (Fig.3.a) interrupt code come, and in that handle 
time tH = 1, then in time T = 7 (Fig.3.d) handler sends 
acknowledge code to network which start propagating in 
network. From this times point the wave of interrupt codes 
and the wave of acknowledge codes propagate in the 
network simultaneously. The Fig. 3.c-g show that interrupt 

code comes into some nodes again in does not propagate 
further because the condition in Step 2.2 of the algorithm is 
not fulfilled. This condition is fulfilled only after the 
acknowledge code will pass throw this nodes and the first 
part label value will be changed. That’s interrupt code will 
not be pass to the link again. 

v0
v2 v3

v4
v5 v6

v9 v8 v7

v10

v14
v12

v13 v15
v16

(1,0)

(1,5)

(0,9)(1,5)

(1,7)
(1,6)

(1,7)

(0,10)(1,2)

(1,7)
(1,7)(1,9)

(1,8)

(1,9) (0,10)

(0,8)

53

2 1

1

23

4

2 1

1

8

1

2
2

3

5

2

1

3
4

2
(0,7)

v1

v11

T=10
v0
v2 v3

v4
v5 v6

v9 v8 v7

v10

v14
v12

v13 v15
v16

(1,0)

(1,5)

(0,9)(1,5)

(1,7)
(0,11)

(1,7)

(0,10)(0,11)

(1,7)
(1,7)(1,9)

(1,8)

(1,9) (0,10)

(1,11)

53

2 1

1

23

4

2 1

1

8

1

2
2

3

5

2

1

3
4

2
(0,7)

v1

v11

T=11
v0
v2 v3

v4
v5 v6

v9 v8 v7

v10

v14
v12

v13 v15
v16

(1,0)

(1,5)

(0,9)(1,5)

(1,7)
(0,11)

(1,7)

(0,10)(0,11)

(1,7)
(1,7)(1,9)

(1,8)

(1,9) (0,10)

(1,11)

53

2 1

1

23

4

2 1

1

8

1

2
2

3

5

2

1

3
4

2
(0,7)

v1

v11

T=11

v0
v2 v3

v4
v5 v6

v9 v8 v7

v10

v14
v12

v13 v15
v16

(1,0)

(1,5)

(1,12)(1,5)

(0,12)
(0,11)

(0,12)

(0,10)(0,11)

(0,12)

(1,7)(1,9)

(0,12)

(1,9) (0,10)

(1,11)

53

2 1

1

23

4

2 1

1

8

1

2
2

3

5

2

1

3
4

2
(1,12)

v1

v11

T=12 v0
v2 v3

v4
v5 v6

v9 v8 v7

v10

v14
v12

v13 v15
v16

(1,0)

(1,5)

(1,12)(1,5)

(0,12)
(0,11)

(0,12)

(0,10)(0,11)

(0,12)

(1,7)(1,9)

(0,12)

(1,9) (0,10)

(1,11)

53

2 1

1

23

4

2 1

1

8

1

2
2

3

5

2

1

3
4

2
(1,12)

v1

v11

T=12 v0
v2 v3

v4
v5 v6

v8 v7

v14
v12

v13 v15
v16

(1,0)

(1,5)

(1,12)(1,5)

(0,12)
(0,11)

(0,12)

(0,10)(0,11)

(1,7)

(1,7)(1,9)

(0,12)

(1,9) (1,13)

(1,11)

53

2 1

1

23

4

2 1

1

8

1

2
2

3

5

2

1

3
4

2
(1,12)

v11

T=13

v1

v9

v10

a b c

d e f

Fig.  4. Looping problem example
 

At the time point T = 11 (Fig.4.b) interrupt code came 
again to the node v13, throw which the interrupt code has 
already been passed and the label value was changed, as a 
result the erroneous situation occur, scilicet the label value 
has changed again and the interrupt code will be passed 
again to the link, which it has already passed throw. Further 
(Fig.4.c-f) at the each subsequent times point interrupt 
codes will be pass erroneously throw the nodes, which they 
reached again, and thereby they will generate new interrupt 
codes which should not be in the system. So at the times 
point T = 12 the interrupt code repeatedly reached handler 
node and will interpreter as new interrupt code, which it 
generate acknowledge for. So, in such network the number 
of interrupt and acknowledge codes will increase and 
interrupt and acknowledge waves may never finish their 
propagation in a certain situation. For example, in Fig.4.f at 
the lowest speed link between the v12, v13 nodes after each 
other propagates interrupt and acknowledge codes that is 
also erroneously. Therefore, it is obvious that interrupt and 

acknowledge wave crossing caused the erroneous situation 
and disrupts the network work, i.e. interrupt and 
acknowledge wave uncrossing in time is necessary 
condition for the correct algorithm and network operation. 
Earlier was proved that interrupt and acknowledge waves 
will not cross in time if the parameters value tG and tH will 
be more than full time of interrupt and acknowledge waves 
propagation. Hence, on the input parameters impose 
following restrictions: 

� Interrupt code processing time tH should be more than 
maximally possible code propagation time from the 
source node to the farthest distanced node (not 
necessary handler-node) in the network by the longest 
path in a worst case;      

� Minimal time interval tG between source node 
receiving code and next interrupt sending should be 
more than maximally possible code propagation time 
from the handler node to the farthest distanced node 

_______________________________________________________PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 196 ----------------------------------------------------------------------------



(not necessary source node) in the network by the 
longest path in a worst case.  

� So, the tH and tG are system parameters required for 
crossing wave protection in networks without errors. 

B. Looping problem solving  
For protection from such type of errors, specifically 

interrupt and acknowledge wave crossing, we offer to do 
restriction to minimally possible time interval TISRchange 
between every ISR’s bit changes of every router (which 
correspond to the first part label value changing). I.e. the 
ISR’s bit value (first part label value) could not be changed 
earlier than time TISRchange has elapsed. This guarantee that if 
a network router receives the unexpected interrupt or 
acknowledge code that it will be not propagate further and 
will not cause the looping problem. The time TISRchange is a 
system parameter, which should be chosen more than 
maximally possible propagation time of interrupt and 
acknowledge codes waves.           

Add to the interrupt and acknowledge propagation 
algorithm the following changes: 

� In the Step 1 add the initialization of Tlc = � , which 
will hold a time value of last first part label value 
changes;  

� Step 2.2.5 change to: “if the condition T>Tlc+TISRchange is 
true, than for every node pair (vi(x, y), vj(x, y)) from Ft 
set in node vj change the label to (1, T) and Tlc = T. If the 
condition is not true the label is not changed”.  

� Step 4.2.5 change as: “If the condition T>Tlc+TISRchange is 
true, than for every node pair (vi(x, y), vj(x, y)) from the 
Ft set for every node vj change the label to (0, T),  
Tlc = T. If the condition is not true there is nothing to 
change”. 

Prove that using of addition parameter TISRchange protects 
network from a looping. Consider again the example with 
loping situation from Fig.3. Assume that handle time tH 
chosen correct and tH = 30. However, in times point T = 7 
in edge (v15, v13) as a result of error acknowledge code has 
appeared. Then in point time T = 8 by this acknowledge 
code propagation the first part label value was changed in 
node v13 because in Step 4.2.5 the condition is true. After 
the algorithm was changed, specifically the check 
T>Tlc+TISRchange is added, this condition will not be true and 
the label will not be change. So in times point T = 11, 
interrupt code which was come repeatedly by longer length 
path,  will be not propagated further  like  in  example  with  

 

 

 

error illustration. That is right because the reason causing 
looping is eliminated. Therefore, the adding of TISRchange 
parameters protects the network to interrupt and 
acknowledge waves looping that is required to prove.  

In the network without cycles, this timeout will be not 
used, and in case of unexpected code appearance during 
timeout, this code will be not propagated further.   

IV. CONCLUSION 
SpaceWire is standard for onboard communication 

networks. In the paper analytical model for distributed 
interrupt mechanism is considered. The algorithm 
correctness work and the algorithms properties are proved. 
Based on this model in other papers the distributed interrupt 
time characteristics are derived. The model allow to derive 
equations which fit to any networks topology with known 
parameters D and PLen, they define the number of edges in 
the shortest an longest path between two most distanced 
nodes and also Tbit, NC and Twt which are network time 
parameters. So, this paper in couple with the other papers 
[4-7] gives to users all necessary information for 
Distributed Interrupt mechanism using in SpaceWire 
onboard networks.  

REFERENCES 

[1] ECSS-E-50-12�. SpaceWire - Links, nodes, routers and networks. - 
European Cooperation for Space Standardization (ECSS), 31 July 
2008 

[2] S, Parkes D 1.1 Consolidated set of Requirements for SpaceWire-
RT, SpaceWire-RT Consortium 

[3] S, Parkes, “D2.1 SpaceWire-RT Outline Specification,” SpaceWire-
RT Consortium, September 2012. 

[4] Yuriy Sheynin, Sergey Gorbatchev, Liudmila Onishchenko, “Real-
Time Signalling in SpaceWire Networks”. International SpaceWire 
Conference, Dundee 2007. Conference Proceedings. ISBN: 978-0-
9557196-0-8, 4�g. 

[5] Liudmila Onishchenko, Artur Eganyan, Irina Lavrovskaya, 
“Distributed interrupts mechanism verification and investigation by 
modeling on SDL and SystemC”. International SpaceWire 
Conference, Nara 2008. Conference Proceedings. ISBN: 978-0-
9557196-1-5 

[6] Liudmila Koblyakova, Yuriy Sheynin, Dmitry Raszhivin, “Real-
time signalling in networked embedded systems”. International 
SpaceWire Conference, St.Petersburg 2010. Conference 
Proceedings. ISBN: 978-0-9557196-2-2, p. 385-388 

[7] Sergey Gorbachev, Liudmila Koblyakova, Yuriy Sheynin, 
Alexander Stepanov, Elena Suvorova, Martin Suess, “Distributed 
Interrupt Signalling for SpaceWire Networks”.  Proceedings of the 
5th International SpaceWire Conference. Gothnburg 2013. ISBN: 
978-0-9557196-4-6. 

[8] Reinhard Diestel, Graph Theory, New York: Springer-Verlag 
Heidelberg, 2005.

[9] James A. Anderson, Discrete Mathematics with Combinatorics. 
Moscow: Williams, 2004 

 

_______________________________________________________PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 197 ----------------------------------------------------------------------------


