
Virtual HSM Implementation in OpenVZ
Containers

Dmitry Kartashov, Kirill Krinkin
Saint-Petersburg Academic University of Russian Academy of Sciences

Saint-Petersburg, Russia
mapseamoff@mail.ru

Abstract—Nowadays some host providers offer facilities to
improve the security of sensitive data. It's achieved by using
Hardware Security Modules (HSMs) – external pluggable
devices that store data in the internal memory and performs
cryptographic operations (encryption, decryption, digital
signing, etc), on that data. Amazon CloudHSM [1] is an
example of such a service, but maintaining these devices is
expensive [2] for customers so it's desirable to have a solution
which security is comparable to HSM, but utilization and
maintenance costs are much lower. In this paper we discuss
one of possible solutions to this problem – Virtual HSM that is
based on the idea of encapsulation of sensitive data and
cryptographic operations in an isolated virtual environment.

I. INTRODUCTION

As mentioned above, the major disadvantage of the
HSM is high price. Software token (e.g. OpenDNSSEC
SoftHSM [3]) is an alternative to physical devices. It
implements a secure storage accessible via PKCS #11
protocol [4]. Unfortunately, these solutions are less secure
than HSM because cryptographic operations are performed
in a client application environment.

The key idea of Virtual HSM is to store the sensitive
data and operate on them in one environment and process
the results of cryptographic operations in the other. In this
solution runtime environments are virtual and represented
by containers or virtual machines. Thereby client
application cannot access the secret data directly though
that data is physically located in RAM (or in files on hard
drive) – this is achieved by OS mechanisms.

The architecture of Virtual HSM is represented in the
Fig. 1. Key components of VHSM are:

� VHSM virtual environment (VHSM VE) is the
isolated environment that contains the VHSM server
and secure storage. The server performs operations on
secret data and storage keeps encrypted user data;

� client API and accompanying utilities for accessing
the VHSM server from a client environment;

� transport exchanges data between client and server
virtual environments.

Fig. 1. Virtual HSM architecture

Virtual environments are provided by OpenVZ [5]
because of this technology is widespread among host-
providers.

The mechanism of the data exchange between virtual
environments is based on Netlink [6]. The advantages of
this way of inter-container communication are easy
extensibility (without kernel recompilation) that makes it
possible to implement a flexible and effective
communication system. The transport layer is discussed in
the section 3.

Client applications can't work in VHSM VE and
interact with VHSM only through an API. The VHSM API
supports bindings to different APIs, e.g. it's possible to use
VHSM via OpenSSL [7] using the engine mechanism [8].
For example, this type of interaction with HSM is used in
“Rutoken EDS” [9]. The OpenSSL engine for VHSM is
discussed later.

The protocol of interaction between a client application
and the VHSM is represented in the Fig. 2. Client
applications use OpenSSL with the appropriate engine or
directly call API methods that make subsequent calls to the
transport layer. The transport-layer library converts
cryptographic function calls into messages that are passed
to the VHSM VE by the kernel transport module. The

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 184 --

VHSM server processes requests using the secure storage if
necessary and sends the response in the same way.

Fig. 2. Interaction between a client application and the Virtual HSM
Fig. 3. Data encryption in the Virtual HSM

II. VHSM VIRTUAL ENVIRONMENT

The VHSM VE contains the secure storage which is the
database that stores the sensitive data in the encrypted form
while other data (import date, purpose, etc) are stored
unencrypted. The encryption key (master key) is generated
from the user password using PBKDF2 [10]. The salt that is
used in the function is stored unencrypted in database.
Thereby the VHSM doesn't keep the encryption key and
utilizing PBKDF2 reduces the brute-force attack rate
significantly if the database is compromised. The Fig. 3
shows how sensitive data are encrypted and stored in the
VHSM.

The VHSM server is responsible for user
authentication, interaction with the secure storage, and
performing cryptographic operations.

A client must be registered in the system to work with
VHSM. Registration process is shown in the Fig. 4. First of
all, a client reports its credentials to the VHSM admin.
When the client is registered in the system a 256-bit
authentication key is generated and encrypted in GCM
mode [11] using the master key. The GCM mode
guarantees integrity and confidentiality of the user data and
therefore makes it possible to authenticate the encryption
key derived from the user password. The VHSM uses this
feature for user authentication.

A user is authenticated (see the Fig. 5) using the
login/password pair and the container ID (VEID) where
authentication request is received from. When a user is
registered it's bound to the set of containers where one can

get access to the VHSM from. If the user attempts to access
to the VHSM from a non-authorized container the request
is refused.

III. TRANSPORT LAYER

The data exchanging protocol between clients and the
VHSM is written in the Protocol Buffers language [12]. On
the one hand, it allows to easily extend the protocol, on the
other it's more space efficient compared to XML. In
general, a protocol message contains parameters of the API
function being called and some service information as well.

As mentioned above, inter-container communication is
based on Netlink, so the OS kernel contains the module that
passes messages between virtual environments while VEs
contain the transport API library which interacts with this
module via Netlink sockets. An example of the
communication between containers is shown in the Fig. 6.

The kernel module identifies containers by their VEIDs
that are provided by OpenVZ. The VHSM environment ID
is passed as a parameter to the module. Messages from
other containers are routed to that VEID. The passed
message contains serialized protobuf data and the header
with the message type, container VEID and process PID.
Meaning of these parameters depends on the transfer
direction. If the message comes from a client container then
the module checks its VEID and forwards the message to
the VHSM VE if the container is allowed to send requests
to the VHSM. When the kernel module forwards the
message it sets the VEID in the message header to the
sender VEID and the PID to the sender process PID derived

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 185 --

Fig. 4. Client registration in the Virtual HSM

Fig. 5. User authentication in the Virtual HSM

from the Netlink message header. So the VHSM can
address the response to the client. If the message is
transferred from the VHSM then the VEID and PID in the
message header are set by the VHSM itself. It's possible
because the VHSM sends responses to the client requests
only and never initiates communication with a client.

IV. CLIENT VIRTUAL ENVIRONMENT

The client part of the VHSM consists from the API-
library and some auxiliary tools such as OpenSSL engines
or PAM-modules (see section V).

The VHSM API library provides PKCS#11-like
functions for managing sessions and user keys and for
digital signing.

Client applications may directly call library functions or
may use OpenSSL extensions. The VHSM API allows the
user to import or generate some secret data (keys). These

data is encrypted by AES-GCM algorithm using the user
master key and then stored in the database. Then the user
gets the data id which allows to use these data in the future.

 If the user wants to perform a cryptographic operation
then one tells key id for this operation to the VHSM. The
VHSM extracts the key from the storage, decrypts it and
performs computations in its isolated virtual environment
while the user gets the result of the operation only.

OpenSSL can act as a layer between a client application
and the VHSM API library. To achieve that OpenSSL
engines can be used. Engines extend the functionality of the
OpenSSL and allow to override implementation of some
cryptographic algorithms. For example, OpenSSL engines
make it possible to use a physical cryptographic device
without modifying the code of the client program. If the
engine provides implementation of the algorithm that
doesn't have the specialized API in OpenSSL then the

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 186 --

Fig. 6. Inter-container communication

standard API is used. The current implementation of the
VHSM engine overrides the hashing algorithm, so the
standard set of OpenSSL HMAC functions can be used. So
implementation of support for the VHSM in an end user
program doesn't require significant efforts.

V. USE-CASE EXAMPLE: LINUX PAM MODULE

Use-cases of the VHSM are not limited to the standard
cryptographic operations. For example, the VHSM can be
used for user authentication in the OS or for enhancing OS-
users password security. For these purposes the PAM
mechanism [13] is used in Linux. In particular, PAM
allows to add some additional steps in the authentication
process and/or in user creation.

The VHSM provides the PAM-module for improving
password security. This module is designed to be used with

the programs login and passwd. The idea is to store the
hash of the signed with the special VHSM key password in
/etc/shadow instead of the hash of the real user password.
For this purpose the special user that signs user passwords
and the corresponding special key must be created in the
VHSM. The PAM-module must be configured with the
credentials and the key id of that user.

While creating a new OS user adduser calls passwd
which loads the VHSM PAM-module according to the
Linux PAM configuration. The module works like
pam_unix and only different is signing of the user password
with special VHSM-user key. The signed password is
hashed and placed in /etc/shadow. When the user created in
this way wants to login into the OS, the login program
loads the PAM-module too and the module signs the
password and checks it against the password hash that
stored in /etc/shadow.

 VHSM PAM-module dataflow is presented in Fig. 7.
It's obvious that an adversary can't crack the user password
in this authentication scenario even if the /etc/shadow is
compromised.

VI. THREATS ELIMINATION

The main purpose of the VHSM is improving user data
security, so let's consider major possible security threats
and countermeasures provided by VHSM. User data
privacy threats are presented in the following list:

� reading secret user data from the client application
memory: secret data are processed in the isolated and
trusted environment only. Memory isolation is
provided by OS mechanisms;

� database leakage: secret data are stored in the
encrypted form. The encryption key is not stored in
the persistent storage and derived from the user
password;

Fig. 7. Virtual HSM dataflow

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 187 --

Fig. 8. Performance test: VHSM and Crpyto++

� Executing an arbitrary database query (including a
SQL injection): the database is stored in isolated
environment so an adversary must escalate once
privileges to the host OS root to read the database.
The VHSM uses prepared statements to access the
database which are resilient against SQL injection,
because the SQL query parameter values need not be
correctly escaped.

Some attacks result in an adversary privileges escalation
or denial of the VHSM service. For example:

� Sending ill-formed messages (attacks on protobuf
parser): transport module checks the message header.
Attacks on protobuf parser are difficult because of
fixed message structure so ill-formed messaged lead
to deserialization error;

� DoS-attack by calling API functions or sending
messages frequently: no protection is implemented at
this moment.

VII. PERFORMANCE

The VHSM testing was performed to evaluate overall
performance of typical operations depending on the number
of clients, because there are no similar solutions at this
moment to compare with. A computer with the following
configuration was used in tests: 2.5 GHz processor, 1 GB
RAM, OS Debian 6.0.7 x64 with OpenVZ patch. Tests
were also performed using only Crypto++ library [14] to
estimate an overhead introduced by the VHSM. Here the
list of tests:

� digital signing the 1 Mb file using HMAC-SHA1
algorithm (Crpyto++ vs. VHSM) performed by clients
simultaneously. Average results are shown in the Fig.
8;

� digital signing the 1 Mb and 32 Kb files by VHSM
using HMAC-SHA1 algorithm (Fig. 9);

As can be seen from graphs, the VHSM introduces a
great overhead in cryptographic operations and currently
can be used only by 20-30 clients simultaneously.

Fig. 9. Performance test: 1 Mb and 32 Kb files

VIII. CONCLUSION

We have discussed one of possible implementations of
the software HSM where logical execution environments
are separated and isolated. Indeed, it's less secure than a
real HSM and has many potential security threats because it
has a lot of user data interaction points (sockets, parsers,
buffers, etc.). On the other hand, the main problem of the
software HSMs – non-isolated execution environment – has
been solved. Furthermore, the host-providers don't require
additional resources to maintain this solution. Currently we
published preliminary solution [15, 16] which can be
downloaded.

REFERENCES

[1] AWS CloudHSM, Web: http://aws.amazon.com/cloudhsm.
[2] AWS CloudHSM Pricing, Web:

http://aws.amazon.com/cloudhsm/pricing.
[3] OpenDNSSEC SoftHSM, Web:

http://www.opendnssec.org/softhsm.
[4] RSA Laboratories – PKCS #11: Cryptographic Token Interface

Standard, Web: http://www.emc.com/emc-plus/rsa-labs/standards-
initiatives/pkcs-11-cryptographic-token-interface-standard.htm.

[5] OpenVZ Linux Containers Wiki, Web: http://openvz.org.
[6] P.N. Ayuso, R.M. Gasca, L. Lefevre “Communicating between the

kernel and user-space in Linux using Netlink sockets”, Software –
Practice and Experience, Aug. 2010, pp. 797-810.

[7] OpenSSL: The Open Source toolkit for SSL/TLS, Web:
https://www.openssl.org.

[8] OpenSSL, Documents: engine, Web:
http://www.openssl.org/docs/crypto/engine.html.

[9] Rutoken EDS support in OpenSSL, Web:
http://forum.rutoken.ru/topic/1639.

[10]B. Kaliski “PKCS #5: password-based cryptography specification”,
IETF, RFC 2898, Sep. 2000, pp. 9-11.

[11]M. Dworkin “Recommendation for block cipher modes of
operation: Galois/Counter Mode (GCM) and GMAC”, Web:
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf.

[12]Protobuf – Protocol Buffers – Google's data interchange format,
Web: https://code.google.com/p/protobuf.

[13]A Linux-PAM page, Web: http://www.linux-pam.org.
[14]Crypto++ Library 5.6.2 – a Free C++ Class Library of

Cryptographic Schemes, Web: http://www.cryptopp.com.
VHSM repository, Web: http://git.openvz.org/?p=vhsm.

[15]Virtual HSM – OpenVZ Linux Containers Wiki, Web:
http://openvz.org/Virtual_HSM

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 188 --

