
High-level Componentization as a Way of Efficient
Server-side Logic Implementation in Ubiq Mobile

Platform

Alexandra Grazhevskaja
Saint-Petersburg National Research University of
Information Technologies, Mechanics and Optics

Saint-Petersburg, Russia
s.grazhevskaja@ubiqmobile.com

Valentin Onossovski, Dmitriy Timokhin
Saint-Petersburg State University

Saint-Petersburg, Russia
v.onossovski@ubiqmobile.com,

dmitriy.timokhin@ubiqmobile.com

Abstract—In this paper we consider approach to building
server-side backend of distributed mobile applications on the
basis of relatively big universal components. The proposed
approach is implemented within Ubiq Mobile platform – a
cross-platform technology for easy development of distributed
mobile applications that can be treated as a proof of described
approach concept. Several examples of “high-level
integration” components and their particular implementation
within Ubiq Mobile platform are considered in details.

I. INTRODUCTION

The total “mobilization” of modern information systems,
which is demonstrated in, on the one hand, in expansion of
client’s components from traditional computers to various
mobile devices, and, on the other hand, in the migration of
backend server logic from dedicated servers to clouds, is
one of the major trends in the modern IT. While the
applications and systems that are focused on personal use
(social, entertainment, content delivery applications etc.)
show tremendous progress in going mobile, the
“mobilization” of business applications can boast
significantly slighter success. The problem is that
practically all applications for business are in fact
distributed systems, combining rich client UI abilities with
complex server-side business logic, and the development of
such systems is much more complex task than creation of
average mobile applications. This limits the usage
possibility of popular tools for easy mobile development
(such as iBuildApp [1] and other similar mobile apps
constructors) because such technologies are fully
concentrated on pure mobile development providing
minimal integration with server-side backend logic
(backend is considered in such applications mostly as a
source of content). From the other side, various Web-based
technologies that are used in conventional business
programming for building distributed applications – such as
Ajax – are not so efficient on mobile devices because of
poor UI abilities and big traffic consumption.

The importance of adequate and easy-to-develop
backend for mobile applications was realized by IT
industry several years ago. Many companies appeared on
the market since 2009 which provided libraries of backend
components specially purposed for mobile applications
usage. One of the most prominent companies was
StackMob [2] that offered rich and universal library of
backend components and provided cloud-based backend
hosting for mobile applications developers (StackMob has
been recently acquired by PayPal). FeedHenry [3] is
another example of company that provides library of
backend components. Recently, Google offered its own
cloud backend platform for Android developers – App
Engine [4] – that provides Android applications with wide
set of backend functions such as authentication, messaging
(including push notifications), different kinds of querying
etc. Due to importance of this area, the new market niche –
Mobile Backend As A Service (MBaaS) was separated
from MEAP (Mobile Application Enterprise Platforms)
sector. A brief review of MBaaS niche specifics can be
found, for example, in [5]. A very detailed review of
modern cross-platform tools and technologies for mobile
development (that are close to MBaaS tools) is given in [6].
The majority of MBaaS consist of relatively young startup
companies founded several years ago.

A common feature of the majority of MBaaS platforms
is relatively low level of functions which they provide. The
typical common set of functions includes push notification,
data queries, file storage and sharing, messaging,
authentication, access to social software, location services,
etc. The complexity of business logic that can be built over
such libraries is sufficiently limited – for example, it is not
easy to implement various kinds of inter-user interactions
within multi-user game on the basis of typical MBaaS
platform. A low level of functionality, provided by MBaaS
platforms, makes their specialization difficult in different
business verticals (although workflows within each
particular vertical typically have many elements in

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 169 --

common) because the level of business process items is
higher than the level of functionality provided by platform.
Thus, the developers are forced to build high-level
workflow items on client side due to insufficient level
functions provided by MBaaS platforms.

II. “HIGH-LEVEL INTEGRATION” APPROACH

In order to understand the limitations of existing
approaches to the development of distributed mobile
applications for business and, in particular, limitation of
existing MBaaS tools to build backend for such
applications (like StackMob, FeedHenry, App Engine), we
will outline the main features which a modern mobile
application should have, depending on its functional and
non-functional requirements, complexity and objectives.
Also, it will let us formulate the actual requirements for the
most capable, effective and integral approach to the
development of distributed mobile applications for
business.

A. Modern mobile application
Modern mobile applications, developed for various

platforms such as Apple iOS, Windows Phone, Android
and other mobile platforms, can be divided into three
groups, depending on complexity of their features.

1) Simple applications that are focused on personal use
(social, entertainment, content delivery applications etc.)
and include most of the following features, generally:

� Simple static UI screens that include standard UI
controls.

� Simple business logic could be implemented in a
client native manner by using standard platform-
specific development tools and easily portable to
other platforms.

� Workflow can be described within simple diagram
in terms of transitions between static screens.
Synchronous / asynchronous requests to server-
side logic could be performed. Requests from the
server can be naturally carried out by push-
notifications.

� Single-user application. Simple interaction
between users or application instances on different
devices is possible, for example, through
asynchronous shared access to data.

� Minor flows of simple data model and low
requirements for bandwidth capabilities of the
channel.

2) Average complexity applications that include small
number of features listed below:

� Rich UI components, third-party UI libraries to be
used.

� External system APIs and data feed providers
connection and integration (maps, payment, social
network, databases and data feeds, and other
business systems).

� Complex business logic, which could be hardly
implemented on client side.

� Complex and partially implicit workflow elements
with asynchronous requests from the server, screen
content generation.

� Complex dynamic interaction between two or more
instances of an application on different devices
(possibly on different platforms). A large number
of concurrent users.

� Working with large volumes of complex data
model, high requirements for mobile traffic
channel bandwidth capabilities.

3) Distributed mobile applications for business include
most features of average complexity applications and in
addition:

� Full variety of platforms, devices and screen
resolutions support.

� Application product line options and versions
depending on business process particular use case,
profiling and customization.

� High reliability and fault tolerance.

In order to implement the distributed business mobile
application features described above we can use different
approaches and technologies (with their own pros and cons)
to create mobile application together with its server-side
backend. Let’s consider some of them in detail.

B. App constructors-based approach
The first way is to use one of the popular tools for easy

mobile development, such as iBuildApp or other similar
“mobile apps constructors”, together with standard tools for
specific mobile platform development. Many such tools are
listed and described in details in “Cross-Platform developer
tools” report by Vision Mobile [6].

1) Pros:

� Set of “ready to wear” UI preset components for
basic feature list.

� Ability to implement simple business logic by
describing “screen flow” transitions.

� Content-oriented usage of external data source.

2) Cons:

� No “out of the box” option for rich UI
implementation.

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 170 --

� Difficult or even impossible to implement complex
business logic that goes beyond simple screen flow
transitions.

� Poor support for server-side and client-side
business logic and workflow options, no external
module or API access support.

� No custom multiuser support.
� Data model is used implicitly.

3) Conclusion: Mobile app constructors allow us to
design and implement simple mobile applications from
scratch and to deploy them to different mobile platforms. It
could be done promptly by unqualified user who has no
programming skills. So it well suits mobile development of
applications from the first category, but in case of
development of business applications it can be used for fast
prototyping only.

С. Existing MBaaS tools-based approach
This mobile application development approach

combines use of standard tools for client-side development
and a set of server-side functions provided by MBaaS
systems to construct server-side backend.

1) Pros:

� It is possible to use standard UI development tools
and third-party libraries.

� MBaaS systems provide rather universal set of
low-level server-side functions that can efficiently
solve low-level business logic problems.

2) Cons:

� No special mobile UI integration provided.
� No support for access to external systems and

APIs.
� No high-level server-side functions provided by

MbaaS.
� Complex business logic to be implemented on the

client-side, causing performance loss and unnatural
application architecture implementation.

� It’s hard to implement complex multiuser
interaction.

3) Conclusion: The described approach suits well for
developing applications of simple and average complexity,
but can hardly be used efficiently when implementing
distributed business mobile application, since it limits
options for complex server-side business logic
development, and doesn’t provide level for business
process modeling. Also it provides no rich UI support.

D. Enterprise level solution and web services-based
approach

This approach is based on usage of enterprise-level
technologies and solutions (Java, .Net, PHP etc.) as a data
source (content generation) and as a business logic

implementation host with remote access and web services
provided as a connection protocol for mobile application
developed using standard platform specific tools. It is
typical approach when enterprise solution already exists
and the problem is to make its services available via mobile
application. Also this approach can be improved by using
of so-called hybrid mobile application frameworks. The
hybrid applications and appropriate development tools that
are currently on the market are described in [6,7].

1) Pros:

� Evident benefit is easy integration to existent
corporate solutions.

� Web technologies can be used for UI
implementation and generation. Native-looking UI
based on Web interfaces can be developed using
hybrid mobile application frameworks.

� Enterprise solutions are specially purposed for
complex business logic development, including
external systems access and business functions
modeling on any level of abstraction.

2) Cons:

� Complex workflow development options are
limited by communication protocol that is based on
web services. The use of web services considerably
increases traffic consumption.

� Server-side event management, implicit workflow
and server-driven screen content generation can
hardly be handled in mobile application.

3) Conclusion: Generally, the approach seems to be
suitable for development of complex distributed mobile
applications, but the resulting applications turn out to be
too “heavy”. Another problem is caused by inefficient and
poor Web UI that forces developers to use additional
“hybrid” frameworks for making UI more native-looking.

E. “High level integration” approach
To overcome the limitations of the approaches described

above and in order to succeed from their benefits we
propose a new approach called “high level integration”
approach. It combines the opportunities provided by
enterprise solutions and technologies with flexibility and
usability of existing MBaaS tools. The fundamental idea of
the approach is to develop core business logic comprised of
a number of relatively big server-side components, which
are highly integrated, provide complete set of functions of
different levels of abstraction and are customizable enough
for effective development of a wide range of mobile
applications.

This approach allows us to design complex business
logic, providing backend of any level of abstraction and

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 171 --

integration complexity. Also, we can use set of server-side
logic components, which can be easily accessed from
application with no unnecessary traffic consumption and
without workflow limitations coming from server
components. This set of server-side logic components is
rather universal and customizable for particular business
process to be implemented. Benefits of “mobile app
constructors” - prompt abilities of prototyping,
development and deployment - can be taken easily in our
approach by implementation of the following features:
addition of the server-side and client-side customizable
components in one click, deployment to different mobile
platforms and UI modeling tool.

High level integration approach can be implemented
within various frameworks. It implies the following basic
requirements to the “host” environment:

� Platform-level support of relatively big server-side
components that can run in server environment
asynchronously and independently (like Java
Beans, from example).

� Simple and efficient mechanism of interaction
between these components that can be used for
building distributed applications (like messaging,
remote calls or some other).

� It is very desirable to have an extendable IDE for
providing support of integrated components on the
IDE level (within specialized add-on).

We try to implement high level integration approach
within Ubiq Mobile platform – a cross-platform technology
for easy development of distributed mobile applications [5],
[6]. This implementation can be treated as a proof of
concept for the described approach. We believe that high
level integration approach can significantly simplify
distributed business mobile application development, as if
it was done using app constructor but had a power of
complex distributed application.

III. COMPONENTIZATION IN UBIQ MOBILE PLATFORM

Ubiq Mobile is a universal platform for easy creation of
distributed mobile online services and applications [8,9].
The platform encapsulates most of the technical details that
are specific for different mobile devices. It provides simple
and intuitive API for the distributed mobile online
applications and services development. One of the key
ideas of Ubiq Mobile platform is the usage of ultra-thin
client-based “mainframe-like” architecture, where the
mobile devices are used like graphic terminals, and the
majority of applications’ business logic is implemented on
the server.

Ubiq Mobile is a cross-platform system from the
viewpoint of supported types of mobile devices. Ubiq
Mobile applications can work on various mobile platforms,

including iOS, Android, Windows Phone and JavaME
(particularly, on Nokia Asha phones). The server part of the
system is based on Microsoft technologies (server-side
components are running under .NET in Microsoft Azure
cloud) and, thus, can be considered as vendor-locked one.
But from the prospective of this paper it is not significant,
because the basic approach, proposed in the paper, can be
implemented within any platform that satisfies basic
requirements to the “host” environment listed above. So,
the proposed approach to backend componentization is
absolutely a cross-platform approach in its essence.

Ubiq Mobile architecture with ultra-thin client
determines basic strengths and weaknesses of the system.
On the one hand, concentration of business logic on the
server side simplifies development of complex distributed
applications with mobile access. At the same time, it
significantly extends variety of supported mobile devices,
including very simple ones. On the other hand, terminal-
like architecture causes lower reactivity and bigger
response timein comparison with “traditional” client-centric
mobile apps. These pros and contras determine the category
of applications which Ubiq Mobile is targeted to. It
includes complex distributed applications with
sophisticated business logic, purposed mostly for business
use, that should work on various mobile devices and don’t
require very quick “real-time” response and animated UI.
Interfaces to business systems, multi-user mobile games
and social applications are examples of apps and services
which belong to this category.

The common problem for all systems with thin client-
based architecture is their poor ability to work offline. In
Ubiq Mobile, some measures have been taken to mitigate
the inconvenience caused by this problem: saving full state
of users’ mobile sessions during connection breaks; caching
images and other unchanged data on client side, and some
others. But unfortunately, such measures cannot provide
smooth work of non-trivial fragments of business logic in
the absence of connection with the server.

Ubiq Mobile is aimed at solving the same sort of
problems as WidSets technology that was developed by
Nokia several years ago [10]. But from architectural point
of view, the two technologies use rather different
approaches: the basic idea of WidSets is free roaming of
lightweight device-independent program components
(“widgets”) between mobile devices of different types. So,
WidSets applications are rather “client-centric”. On the
contrary, the basic idea of Ubiq Mobile is maximum
concentration of business logic on server side and set of
unified ultra-thin clients on mobile devices of different
types.

There are two types of applications in Ubiq Mobile
system – custom applications and application services.
Custom applications are related to mobile users’ sessions.

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 172 --

The application services are started during the server start
and remain running during the whole lifetime of the
system. The Ubiq Mobile applications are separately
executed components (specifically - .NET assemblies) that
are dynamically deployed onto the server and running in its
environment. Each application runs in a separate thread
using a thread pool.

The Ubiq Mobile server core implements basic
functionality of the system. It ensures communication with
clients’ mobile devices, deployment of applications and
services, their running within server environment and their
mutual interaction.

The Ubiq Mobile platform provides a set of system
services over server core – such as user authentication,
persistence support, geocoding and some other services.
Every such service is available for application developers
through its API. Similar APIs are used for access to the
external systems and data sources.

The interaction between custom applications and the
platform application services is messaging-based – both
synchronous and asynchronous messages are available.

The mobile ultra-thin clients interact with the server via
proprietary binary protocol built over TCP/IP. The protocol
is specially optimized for mobile connections; it includes
special mechanisms for handling possible mobile
connections breaks and mobile traffic reduction.

Development tools for Ubiq Mobile platform are
“packed” into a special plug-in for Microsoft Visual Studio.
The plug-in includes visual DSL editor for creating
component architecture of the developed application, visual
UI designer for cross-platform UI development, universal
mobile client emulator integrated with Visual Studio
debugger, tools for deployment of the developed
applications into a cloud and some other tools. Ubiq Mobile
plug-in provides comfortable environment for efficient
development of complex distributed applications with
access from various mobile devices.

Since the abilities of Ubiq Mobile platform completely
satisfy to the basic requirements of high-level
componentization, it was decided to use this approach for
building complex Ubiq Mobile applications. Integrated
components are implemented in Ubiq Mobile as service
applications, publishing their APIs to other applications for
interaction with them. Inside APIs, messaging is used as a
low-level mechanism for inter-component communication.

High-level componentization is supported in Ubiq
Mobile platform on the level of development environment
– set of components are contained in the standard plug-in
component library, and can be easily included into
architecture diagrams of the developed applications.
Interfaces between these integrated components and other

components of the developed application, are automatically
generated by the plug-in.

We started from developing “general-purpose”
integrated components – Dispatcher and Authentication
services. Dispatcher component provides basic
functionality for inter-user communication within multi-
user Ubiq Mobile applications while Authentication
component provides various types of authentication for
mobile users. The results of developing both integrated
components and their use in real application can be
evaluated as quite successful, and we are currently planning
to extend the set of integrated components provided for
Ubiq Mobile developers.

IV. DISPATCHER COMPONENT

As an example let’s consider Dispatcher Service
component, that encapsulates basic tasks associated with
the interaction between mobile users in the distributed
multi-user applications.

Such tasks as user registration, user authentication, user
interaction, storing information about users and their
interactions in some sort of persistent database, etc. are
common for any multi-user mobile application and do not
depend on its business logic features. Thus, the
componentization of such functionality (rather complicated
to implement and debug) exempts developers from
significant part of routine work.

The logical model of user interactions through
Dispatcher includes two classes of objects: users and
dialogs. User objects represent mobile users and dialog
objects represent established connections between them,
which allow them to exchange with messages. Both one-to-
one and many-to-many dialogs are supported. Users can
also subscribe to each other to be notified about peers'
updates. Any changes in peer status as well as application-
dependent information changes cause such notifications.

User object contains the following attributes:

� User name.
� UserID.
� Password.
� User status.
� Object with user-specific additional information

(for instance, for multi-users game – information
about player’s score).

Dialog object contains the following attributes:

� DialogID.
� Dialog status.
� Object with additional information (for instance,

message history of the dialog).

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 173 --

Fig. 1 shows Dispatcher Service and user applications
interaction.

Fig. 1. Dispatcher and user application interaction

Dispatcher is an application service running in separate
thread. There may be several Dispatcher instances for
different types of user applications. User applications
interact with Dispatcher via locally instantiated
DispatcherAPI objects. Each call of DispatcherAPI method
cause sending of the appropriate message to a Dispatcher.
As a result of the method invocation, some meaningful data
or an error code can be returned. Asynchronous messages
coming from Dispatcher raise appropriate asynchronous
events in API that can be handled by the application.

The DispatcherAPI functionality includes the following
groups of functions:

� User login and registration methods.
� Methods for obtaining information about users.
� Dialogs processing methods.
� Inter-user communication methods.

Let’s consider how these methods work. We assume that
some multi-user application needs to register a new user.
For this purposes, it invokes Register method of Dispatcher
API with appropriate parameters – user name and password
and, probably, some object containing application-specific
information (like game status of this user, for example).
The Register method creates dispatcher message containing
all passed parameters, and sent it synchronously to
Dispatcher (i.e., applications thread is waiting until
receiving response from Dispatcher). When Dispatcher
receives the message from its input queue, it invokes
appropriate message handler, depending on message type.
All message handlers perform some initial validation of the
parameters of incoming messages. For example, the user
name obtained from Register message, is checked for
uniqueness and the password is checked for compliance to
supported authentication policy. For application-dependent
additional data, validation is not performed because
Dispatcher knows nothing about their semantics. Such
additional data are just added to the database associated

with the given user. After completion of registration
process (either successful or unsuccessful), the handler
sends back a response message to the application that
requested Dispatcher for registration. In case of successful
registration, the application receives a unique UserID that
will be used for further communications with Dispatcher.

If the user is already registered in the system and wants
to log in, the user application invokes one of two
overloaded Login methods of Dispatcher API for
authentication either by user name and password or by
unique identifier of client’s mobile device. The Login
request is handled by dispatcher in the same way like
Register request – an appropriate handler is invoked,
validation of parameters is performed and, in case of
successful authentication, Dispatcher updates current status
of the user from “Offline” to “Online” and sends back to
the application a response message with unique UserID.
After successful login, the user can update his application-
dependent information by invoking UpdateUserInfo
method with a single parameter - an object containing new
application-specific information. This new value will be
stored in the Dispatcher database. As a result of execution
of this request, Dispatcher sends back to the application the
result of database update operation(successful or
unsuccessful) and, in addition, sends notification messages
to all other users who are connected with the given user
through dialogs. Such standard attributes as username, user
ID, client mobile device ID and some others, are stored in
DispatcherAPI object during its whole lifetime. From
application developer prospective they can be considered as
implicit parameters that are passed to the invoking API
methods. When necessary, these attributes are copied into
messages sending from API to Dispatcher. This mechanism
reduces number of parameters passed to API methods and
makes the whole API more compact and easy-to-use.

The user application can obtain list of current users
(applying various filters – all, active, online etc.) by
GetUserList method invocation. Type of applied filter is
passed to the method as a parameter. The resulting list
sending back by Dispatcher to the application contains
basic information for each user – username, userID and
current status of the user. It is possible to retrieve more
detailed information about particular user through
GetUserInfo method (one of overloaded variants).

 User applications can communicate via Dispatcher by
using dialogs. One of participants (communicating
applications) creates the dialog by CreateDialog method
invocation and then invites other participants to join this
dialog via InviteUser method. The dialog between two
users may be established by simpler way: the caller
application just invokes InviteUser with two parameters
UserID of callie application and application-dependent
info. In this case, Dispatcher creates a new dialog, assigns

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 174 --

unique DialogID and sends invitation message to the callie
application.

After receiving invitation, the invited application may
either accept or reject this invitation. Invitation is accepted
by JoinDialog method invocation and rejected – by
RejectInvitation method.

Applications can send any information messages within
established dialog by SendMessage method invocation with
two parameters – DialogID and user-defined object
(containing sending information itself). Each message sent
by one participant is delivered by Dispatcher to all dialog
participants. Type of information that is sent via message
depends on nature of application: for example, in multi-user
game messages may contain players’ turns, while for chat
application it may be either text or file message.

We can see that Dispatcher efficiently encapsulates most
of routine inter-user communication work for various
classes of multi-user distributed applications. Moreover, it
can be used for setting up communications between user
applications and other applications, representing some
external devices. For instance, a service of translation of
images from remote webcams to mobile users’ devices, can
be implemented on the basis of Dispatcher.

Another typical example of using Dispatcher component
is a generic template for turn-based multi-player games,
such as Battle Ship, TicTacToe etc. The template is
implemented as a state machine that performs such generic
functions as user registration/logging in, displaying list of
available players, invitation player to the game, making
game turns, determining of winner, deciding whether play
again or not, etc. All game-specific functionality (like game
file initiation, making turns, determining winner) is
represented by empty templates that should be overridden
in particular game implementations - ancestors of the
template. But most of general functionality is related to
inter-user communications and the appropriate template
functions are actively use DispatcherAPI. The architecture
of multi-user game application built over game template,
looks like shown on fig. 2.

We can see that in this application, DispatcherService is
interacting with two other integrated components –
DBServices (that provides persistent storage for
applications) and AuthenticationService, providing various
mechanisms for authentication (via local users database,
OpenID, social networks etc.). These components are built
on the same principles as Dispatcher component and
provide their own APIs for access to them from
applications. Like in DispatcherAPI, applications
communicate with these components via messaging.

The functionality of the Dispatcher component can be
extended in various directions. Currently we are working
on Dispatcher extension called GeoDispatcher – the

Fig. 2. Architecture of multi-user game application

integrated component that handles inter-user
communication based on their locations. In addition to
basic Dispatcher functionality, the new component provides
ability to get list of users sorted by their distances from the
current user (of getting list of all available users located
within some given range), users’ locations tracking abilities
and some other location-based functionality that helps
significantly in building modern distributed mobile
applications.

V. CONCLUSION

In this paper we tried to consider the problem of building
server-side backend for distributed mobile applications on
the basis of high-level integrated components that
encapsulate big self-sufficient fragments of application
business logic. The proposed approach provides higher
degree of integration of the components – “building
blocks” for server-side backend in comparison with the
majority of MBaaS systems. It allows to use highly
integrated components for implementation of separated
elements of business processes that is the basic goal of the
proposed approach.

The particular implementation of the approach that has
been made within Ubiq Mobile platform confirmed its
effectiveness. One can imagine many other useful and
efficient integrated components that cover typical needs of
distributed mobile applications. Among possible examples
of such components – support of electronic queues with
push notifications to mobile users’ devices, filters over
external data sources/feeds that “monitor” current data
streams and notify user when the data that meets some

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 175 --

predefined conditions, is appeared, modules for monitoring
locations for moving objects etc.

The proposed approach is not Ubiq Mobile-locked. It
can be implemented over any distributed “host”
environment that provides appropriate feature set and meets
the requirements of host environment listed in Chapter II.

The use of the proposed approach lets mobile developers
significantly facilitate the development of complex backend
for their applications and provides opportunity to create
libraries of components – fragments of standard business
processes. The overall design of distributed application,
using integrated components, can be easily implemented
within IDE by using customizable graphical design tools.

There are two basic restrictions of the proposed
approach – first, the host environment should be
“advanced” and server-centric enough for implementing
complex server-side business logic. Second, it inevitably
requires from the developer to write a code – it is hard to
imagine how to use integrated components together with
simple mobile app constructor such as iBuildApp.
However, this applies to the most of MBaaS systems.

The above example of implementation of the particular
component – Dispatcher – gives an idea of the scale and
level of complexity of the components that can be
implemented with the proposed approach. In business

applications, the proposed approach allows to build
complex integrated components, which correspond to
separate elements of the standard business processes that
makes it possible to form component libraries specifically
for different business verticals.

REFERENCES

[1] iBuildApp, Inc. official website, Web: http://ibuildapp.com.
[2] StackMob, Inc. official website, Web: http://www.stackmob.com.
[3] FeedHenry, Ltd. official website, Web: http://www.feedhenry.com.

Google, Inc. official website, Web:
https://developers.google.com/appengine.

[4] Andrew Brouwnberg. MBaaS Can Accelerate Mobile App Rollout
– Analyst brief, Web: https://www.nsslabs.com/reports/mbaas-can-
accelerate-mobile-app-rollout

[5] Cross-platform developer tools-2012. Report by Vision
Mobile.com.Web: http://www.visionmobile.com/product/cross-
platform-developer-tools-2012/

[6] Tata Consultancy Services. Hybrid Mobile Applications
Development Approached. White paper. Web:
http://www.tcs.com/resources/white_papers/Pages/Hybrid_mobile_
application_development_approaches.aspx

[7] V. Onossovski, A.Terekhov, “Ubiq Mobile – a New Universal
Platform for Mobile Online Services”, Proceedings of 6th seminar
of FRUCT Program, 2009.

[8] T.Bryksin, Y.Linvinov, V.Onossovski, A.Terekhov, “Ubiq Mobile
+ QReal – a technology for development of distributed mobile
services”, Proceedings of 10th conference of FRUCT association,
2011.

[9] Nokia Widsets technology. Developer Wiki. Web:
http://developer.nokia.com/community/wiki/Category:WidSets

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 176 --

