PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

MneMojno - Design and Deployment of a Semantic
Web Service and a Mobile Application

Dmitry Zamula, Maxim Kolchin
University ITMO
Saint-Petersburg, Russia
{zamula.dmitry, kolchinmax} @ gmail.com

Abstract—In this paper we discuss our experience with the
design, development and deployment of MneMojno Semantic
Web Service and Mobile Application. MneMojno makes use of
Semantic Web Technologies to create a web service and a mobile
application for rating and providing detail information about
food products. This paper introduces the main components of
the system: a framework to capture information about food
products from various sources, a semantic web service and a
framework to visualize and analyze usage statistics. Finally, we
discuss challenges and problems we faced during the development
and present our conclusions and future directions for exploration
in terms of developing MneMojno further.

Keywords—Ontology Engineering, Semantic Web, Ontology
Building.

I. INTRODUCTION

In this paper we describe the process of creation and
deployment of a mobile application "MneMojno”, based on
semantic technologies. The main issue solved by the applica-
tion - construction of a relative mark of the food, to simplify
the process of selecting the most useful ones. Consider one
of the use-case: the user choose a product in the store, scan
the barcode on the package and makes an informed choice of
a particular product on the specified criteria. It is required to
provide a quick obtaining the maximum amount of information
about the requested product on the fly, calculate a relative mark
and visualize the results to the user.

Initially considered that the advice, received from the ap-
plication, will be in some way, generalized, as each person
has a personal preference and contraindications, but built
architecture allows implementing personal assessment factors
in the future.

Since the barcode does not provide information about structure
of the product, we need to collect, process and provide
information about products, in particular, composition, energy
value, the presence of GMOs, the presence of food additives
(and their origin - natural / synthetic).

A. Similar applications

To date, there are some applications on the market with
similar functionality - one of the most famous in the area
- ”Fooducate”. The main approach is repeated, as in the
described application - user scans barcode and gets some useful
information about product. Fooducate also provide additional
applications for users with special needs (diabetes, allergies
oriented). But, in this field a big part of information required

for the analysis of the product, existing applications cover the
product basket for only certain countries, and at the moment,
none of these applications cover the Russian market.

B. Structure of the Paper

At the Section II the general architecture and main com-
ponents of the application are presented. Next three sections
describe our experience in topics of data retrieval, management
of this data and recording of user activity. At the section VI
we highlight and list some challenges and problems we faced
during the development. And the last section we provide the
conclusion.

II. OVERVIEW
A. Web Service

The initial idea of the project was to create a mobile
application, but with the accumulation of a large number
systematic data, it became clear that the database itself can be
provided as a service, and therefore, it was decided to provide
API as a RESTful web service.

Using the REST API simplifies the development of arbitrary
clients (mobile application, web version, a desktop applica-
tion).

PlayFramework has been chosen to implement the REST API
and core module, which brings together all the server modules
for the proposed approach “convention over configuration”,
reducing the amount of code, as well as a large community
and use JVM as a base (the framework itself supports Java and
Scala programming languages). In the future we plan to add
semantic support for web service interface, but now, mainly,
semantic technologies have been used in the server part of the
whole system. It includes several components:

e RDF data-storage, Virtuoso Universal Server;

e Framework for RDF processing - Sesame,
which provides interfaces for RDF data storage, be-
sides multiple methods for data manipulation;

e Set of the custom SPARQL-builders, which allows to
build dynamic queries

e Tuple Query to JSON serializers

Despite the existence of solutions on the market that
implement ORM approach for working with ontologies, in
form of the data schema, those solutions were discarded due

ISSN 2305-7254

PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

to the lack of any information on production ready of this
approach, and due to issue with difficulty of defining and
optimizing the final SPARQL query.

A high-level diagram of the components is shown on
Figure 1.

Application flow is as follows:

1) The user makes a query by calling a specific API
method

2) After the stage of validation and transformation into
internal Data Transfer Object from the request pa-
rameters, SPARQL query string is constructed

3) Request sends to the Virtuoso with the Sesame API

4) Asynchronously received triplets, serialize into
JSON, which is sent to the client

B. Client

In order to develop a client application, we use the HTML5
Single Page approach, expressed in the creation of a single-
page Web application, and wrap it in a container that emulates
the native application. The main objective of this technique -
cross-platform implementation of the application code (busi-
ness logic and UI part). Phonegap framework, as the container
and infrastructure for building mobile application was used.
With the lack of computationally complex tasks there were no
problems with performance of the application. The only one
critical area - the implementation of a barcode scanner was
realized using native code parts, which also allowed working
directly with the mobile device hardware elements (for camera
access).

The main technologies for the development of mobile ap-
plications were the HTML and CSS to mark up the user
interface and JavaScript to implement business logic. Given
the nature of a mobile application, there was a requirement to
create a multi-template application. AngularJS, as a JavaScript
framework has been selected on the basis of this requirement,
because it also support the ability to link data between the
dynamic context (business logic), and the presentation layer
(UI). Current version of user interface is present on Figure 2

III. DATA RETRIEVAL

To implement the functionality of the products’ analysis,
it is necessary to have a set of data which will be base for
a variety of analytical tasks, which forms the final rating of
the product, with the ability to track the route to a particular
value. Several web resources were selected as a data-provider,
which contains product identifier (barcode or name) and one or
more types of interest information (composition, the presence
of GMO, food value, etc.).

Crawling was used as a method for retrieving information from
the web pages, composed in writing programs that parse html
code for a given page, and preserving certain blocks of data
in text file (csv format). In daily practice, most crawlers are
one-time programs, with single cycle of retrieving information.
In case of the described application, it’s originally intended to
deferred supplement the available information which expressed
in the creation of schedule software jobs, and updating existing
information sources from the set when the data source (in this
case, a website), supplemented with new information. Thus,
the problem by monitoring updates of existing data was solved,

164

CbIBOPOTOYHBIA HANWUTOK TM :
"MILKTIME" MOXWUTO KNYBEHUYHbIW,
500 MN

He HailjeHo BpeHbIX
WHIPEAUEHTOR

E-po6aeku 38.0 kkan TMO

E330 — AHTHOKCHAAHT
AHTHOK AaHTh! 3alMWLA0T NPOAYKTH NATAHKA OT
OKHCNEHHA, NPOroOPBEKAHHMA W MAMEHEHWA L|BETA

[} cxavspoears

Fig. 2. Mobile user interface

due to the asynchronous-loading of new pieces of information.
The conflicts merging process is a semi-automatic ones - in
the case of receiving data on any empty field, merge will
begin. The merge is doing manually if it’s necessary to update
existing data.

Data retrieval is implemented by defining CSS selector-
like paths to the interest data and processing these paths with
JSoup library. The resulting CSV files were used in semi-
automatic process of refining with an OpenRefine[1]. Typos
were corrected and the numbers of synonyms were reduced
using a text facet and clustering to simplify the analysis of
the information. This process can also be considered as an
enrichment of the data, as in this case we made unification
of the product data structure that allows to detect the original
ingredients in the multi-level ones (in case, when the final
product is composed by a multiple sub-products). After semi-
automatic data processing, information was exported to RDF
format, using our own ontology.

IV. DATA MANAGEMENT

As mentioned in the second section, Semantic Web tech-
nologies, such as OWL[2] and RDF[3], are used in the
application extensively to store and process the data about
food products, their ingredients and ratings. Similar to the
development of an application using the relational approach
to data management where the first step is to build a database
schema, ontology for organizing the information was built and
called, Food Product Ontology.

A. Food Product Ontology

The main ontology that is extensively used in the system
is ontology for describing food products, called Food Product
Ontology. The ontology extends the most powerful ontology
for describing all of the details of products and services,

PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

=z<=Muaobile clients= E

<<Web Service==

%]

<<Web framework=
Play Framework

0
Y

Q

=zCores= E

<=Tuple to JSOM E

serializers= <<3PARCL builder::-{l

<<Data connectors=
Sesame E

=<HDF data storage=
Virtuoso E

Fig. 1. Component diagram

GoodRelations[4] ontology. GoodRelations is a widely used
ontology that is adopted by Google, Yahoo, Bing and other
search engines.

A visualization of classes and properties in form of an
entity-relationship diagram is shown on Figure 3.

The most important conceptual elements of the domain are
as follows:

Product or Service - A class from the core ontology
describing an actual product, product makes and models or
classes of actual products that are similar in function or nature.

Food - is a concept representing a food product and a
subclass of Product or Service concept in GoodRelations,
therefore it inherits all needed properties of a product, such
as barcode, name, description, weight and others.

Ingredient - An ingredient of a dish or a food product,
i.e. a sugar or an artificial flavor. It has several subclasses
describing different types of ingredients, such as Food additive
and E-additive.

An example of RDF in Turtle[S] syntax describing a food
product:

165

@base <http://example.org/foodproducts/> .
@prefix gr: <http://purl.org/goodrelations/v1#> .
@prefix food: <http://purl.org/foodontology#> .

<4600528346794>

a food:Food .

gr:name "Cheese Sauce" ;

gr:hasEAN_UCC-13 "4600528346794" ;

gr:description "mayonnaise sauce" ;
food:containsIngredient food:El60a, food:E260 ;
food:energyPer100gAsDouble "399"""xsd:double ;
food:fatPerl1l00gAsDouble "42"""xsd:double ;
food:ingredientsListAsText "Water, sunflower oil, ..." ;

B. Tools

Several tools were used to build the infrastructure and
support the management: a tool for editing and visualizing
the RDF content, called OntoWiki[6]; a tool for cleaning,
discovering and enriching data, called OpenRefine.

V. USER ACTIVITY STATISTICS

As for any application, user activity statistics plays impor-
tant role in determining popular and less popular features of
an application. dAquin Mathieu et al showed in their paper[7]

PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

ProductOrs ervice

#ingredientListAsText 5

carbohydratesP erl00

fatF erl0lg

QuartitativeValueFloat

energyP er 100

q rdfs:label E:l

proteinsPerlotg

| GoodRelations

Feod Ontelogy | RDF Schema

Fig. 3. Conceptual Model of the Food Ontology

that semantic technologies can provide adequate solutions for
the following problems:

Fragmentation and heterogeneity - user activity data
usually stored in log files that can have different formats, and
might not be easily integrated between different components,

User identification - identifying a user within the data is
typically a problem faced by any activity analysis,

Data analysis - the data usually are in raw, uninterpreted
logs from which is difficult extract meaningful information,

Scale - Tracking user activities through logs can generate
immense amounts of data. Typical systems cope with such
scale through aggregating data based on clusters of users. Here,
we need to keep the whole set of data for each individual user
available to provide meaningful analysis of their interaction
with the organization in a user-centric way.

For MneMojno project, Atom Activity Streams|[8] is used,
since this specification is widely used by many companies
and projects, and definitely de-facto standard for recording
user activity. This specification has a draft implementation
of ontology that was developed for NoTude project (EU FP
7), called Atom Activity Streams RDF mapping[9] which we
extended to add concepts needed at the project and make it
more closely to the specification.

166

A. Activity Ontology

The activity ontology is an extension of the Atom Activity
RDF mapping ontology to add several concepts which the
original ontology doesnt have:

Mobile Application - any application which is run on a mobile
device. The concept is a subclass of Actor and has a property
for describing UUID of the mobile device,

Product - any product such as a food product. The concept is
a subclass of Object,

Read - is a verb that indicates that the actor read the object.
Its a subclass of Verb.

An example of RDF in Turtle syntax representing a user
activity of requesting information about food product which
barcode is 4600528346794 from mobile device which UUID
is 550e-e29b-41d4-a716-446655440000 at September 29th in
3:33 pm:

@base <http://example.org/> .

@prefix easo: <http://mnemojno.ru/ontologies/activity#> .
@prefix aair: <http://xmlns.notu.be/aair#> .

@prefix food: <http://purl.org/foodontology#> .

</foodproducts/4600528346794>
a food:Food ;
a easo:Product .

</actors/550e-e29b-41d4-a716-446655440000>
a aair:Actor ;

PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

easo:hasUUID 550e-e29b-41d4-a716-446655440000

</activities/1380486801>
a aair:Activity ;
aair:activityObject </foodproducts/4600528346794> ;
aair:activityActor
</actors/550e-e29b-41d4-a716-446655440000> ;
easo:activityVerb easo:Read .
aair:activityContext
[a aair:Time; aair:date 1380486801 .]

VI. DISCUSSION

At this section we want to highlight some challenges and
problems we faced during the development of the application
using semantic technologies:

e Absence of production-ready frameworks for querying
RDF storage with ORM-like API.

e Poor set of tools for refining stage of data processing.

e Requirement of integrated tool for data management
(with possibility of editing ontology and data to-
gether).

The problem we’ve faced during the development was an
absence of production-ready frameworks for managing RDF
data with API in ORM style. A high-level diagram of the
object mapper is shown on Figure 4.

Currently, we need to manual construct of a SPARQL query
in every process of data managing. Also, with this approach,
there is a requirement to implement data-transformation layer
between RDF and object oriented data form.

There was a project with ORM-like approach to RDF,
named Sommer, which implement annotation-way mapping
with following syntax:

@rdf (foaf + "Person")
public class Person {
public static final String foaf =
"http://xmlns.com/foaf/0.1/";
Q@rdf (foaf + "name") private Collection<URI> names;
}

This project was abandoned, and last modification was
about 5 years ago which prohibits its use in production.
Another abandoned project with required functionality is jen-
abean”, which try to implement Java Persistence API:

public class Car {

@Id

private String id;

private int value;

public int getValue() {return value;}

public void setValue (int i) {value = i;}

public String getId() {return id;}

public void setId(String id) {this.id = id;}
}
@prefix : <http://my.bean/>
<http://example.com/javaclass>

a owl:AnnotationProperty .

<http://my.bean/Car/1>

a :Car ;
:id "1"""xsd:string ;
:value "444"""xsd:int

a rdfs:Class ;
<http://thewebsemantic.com/javaclass>
"my.bean.Car"

167

:id a rdf:Property .

:value
a rdf:Property .

There is a growing project "Empire” with required API.
It provides a standard JPA style interface to RDF databases
using SPARQL with custom annotations:

@Namespaces ({"frbr", "http://vocab.org/frbr/core#",
"dc", "http://purl.org/dc/terms/",
"foaf", "http://xmlns.com/foaf/0.1/"})
@RdfsClass ("frbr:Expression")
@Entity
public class Book implements SupportsRdfId {
private SupportsRdfId mIdSupport = new SupportsRdfIdImpl();

@RdfProperty ("dc:title")
private String mTitle;

@RdfProperty ("dc:publisher")
private String mPublisher;

@RdfProperty ("dc:issued")
private Date mIssued;

@RdfProperty ("foaf:primarySubjectOf")
private URI mPrimarySubjectOf;

@OneToMany (fetch = FetchType.LAZY,
cascade = {CascadeType.PERSIST, CascadeType.MERGE})
@RdAfProperty ("frbr:embodiment™)
private Collection<Manifestation> mEmbodiments =
new HashSet<Manifestation>();
}

The project was started in 2011, but it is still in the early
development stage. It is not support JPA Query Language
(JPQL), so it’s useless in case of complex SPARQL query.

At the stage of data refining, we faced with a poor set of
tools, which can be used. There is one ’leading’ tool in this
field - OpenRefine (GoogleRefine in the past) with appropriate
license (BSD) for our project. It covers some part of refine
process:

e Importing

e Filtering / faceting

e Editing cells by Clustering
e Using regular expressions

e Exporting to RDF

The main issue with this tool is performance. OpenRefine
works in browser, and with data set larger then about 5000
rows, the user interface become unusable. So, we needed to
break our main data set into smallest parts, and work with
these parts separately.

After completing data refine process we’ve managed with
ontology part. In enterprise world with relation databases there
are multiple handy database clients exist. In these applications
we can manage database schema and also work with data (in-
sert, find, modify, delete). It’s quite uncomfortable in semantic
world to work with ontologies and data separately. There are
not such tools, which combine data schema (ontology in our
case) management and RDF database client functionality.

PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

Application
(Business Tier)

ORM-like framework
(Persistence Tier)

RDF Storage
(Data Tier)

Fig. 4. Object mapper diagram

VII. CONCLUSION & FUTURE WORK

In this paper we described the process of MneMojno appli-
cation development, which use semantic technologies in core.
We described the main principles of semantic development
with our architecture details, clarify the development phases
and appropriate tools. The current stage of the project allows
us to conclude about a success of the application, based on
semantic-technology approach with existing technologies for
building end-user services. Each day, we process hundreds of
user requests, and plan to increase this number. As a future
work, we plan to improve infrastructure part of our project -
there is a multiple way to improve existing RDF storage clients
with target to use them by non-developer team member.

REFERENCES

[1] D. Huynh and S. Mazzocchi. ”OpenRefine”, http://openrefine.org.
[2] Hitzler, Pascal, et al., "7OWL 2 Web Ontology Language: Primer”, W3C

168

(3]

(4]

(51

(6]

(91

DTO
{Data Transfer
Object)

Recommendation 2 October 2009, 2009., Harlow, England: Addison-
Wesley, 1999.

Dave Beckett, et al. "RDF/XML Syntax Specification (Revised)” W3C
Recommendation 10 February 2004, 2004.”

Hepp, Martin. ”Goodrelations: An ontology for describing products
and services offers on the web.” Knowledge Engineering: Practice and
Patterns. Springer Berlin Heidelberg, 2008. 329-346.

Beckett, David, Tim Berners-Lee, Eric Prud’hommeaux and Gavin
Carothers. "Terse RDF Triple language.” W3C Candidate Recommen-
dation, 2013; http://www.w3.org/TR/turtle.

Tramp, S., Frischmuth, P, Heino, N., "OntoWiki — a Semantic Data
Wiki Enabling the Collaborative Creation and (Linked Data) Publication
of RDF Knowledge Bases” In O. Corcho, J. Voelker (eds.), Demo
Proceedings of the EKAW 2010, 2010.

d’Aquin, Mathieu, Salman Elahi, and Enrico Motta. ”Semantic technolo-
gies to support the user-centric analysis of activity data.”, Social Data on
the Web: Workshop at the 10th International Semantic Web Conference,
2011.

Atom Activity Streams 1.0, http://activitystrea.ms/specs/atom/1.0/.

Atom Activity Streams RDF mapping, http://xmlns.notu.be/aair/.

