PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

Context-Based Access Control for Ridesharing
Service

Nikolay Teslya, Alexey Kashevnik, Michael Pashkin
SPIIRAS
St.Petersburg, Russia
{teslya, alexey, michael} @iias.spb.su

Abstract—The paper describes a context-based access control
model for a ridesharing service. Ridesharing is a shared use of a
car by the driver and one or more passengers for a joint trip. The
service is based on the smart space concept. For this purpose the
Smart-M3 platform is used. Currently the Smart-M3 platform
doesn’t have an appropriate access control mechanism meeting
the following requirements: supporting a flexible, descriptive and
well-defined policy language and taking into consideration the
context information. Therefore, the usage of the context-based
access control model has been proposed. This model is built as a
combination of the role-based and attribute-based access control
models. It uses roles, which are assigned dynamically based on the
user’s context, and meets the requirements to the access control in
the smart space. An analysis of information transfer through the
ridesharing service modules is used for defining the user’s context.
The model has been implemented within an access control broker,
which controls the access to the smart space resources.

Keywords—Ridesharing, Smart Space, Context, Access Control.

I. INTRODUCTION

The ridesharing service provides a real-time fellow-
travelers search. It makes mobile devices of drivers and poten-
tial passengers as well as computational devices interoperate
in a common smart space, based on the Smart-M3 platform
[1]. The computational devices have a special software (e.g.,
ridesharing brokers) for complex computations, which cannot
be run on the users’ devices for several reasons, such as
energy saving and computation capabilities. To operate the
service needs information from users, such as their paths
and preferences for searching matching paths. Most of this
information cannot compromise the user’s privacy, but there
can be some information that has to be protected with access
control for being used only by defined persons and services.
For example, people don’t often want to share their locations
to others. At the current state of the Smart-M3 platform
development, all of the information in the smart space is
available for reading by any of its participant without any
restrictions.

The key idea of the Smart-M3 platform is device, domain,
and vendor independence. Devices and software entities can
publish their embedded information for other devices and
software entities through simple, shared information brokers.
Information exchange in smart space is implemented via
HTTP, using Uniform Resource Identifier (URI). The Smart-
M3 platform consists of two main parts: information agents
and a kernel. The kernel consists of two elements: Semantic

Information Broker (SIB) and data storage. The information
agents are software entities, installed on mobile devices of the
smart space users. These agents interact with SIB through the
Smart Space Access Protocol (SSAP) using “insert”, “update”,
“remove”, “query”’, and ‘“subscribe” transactions. The SIB is
the access point for receiving the information to be stored, or
retrieving the stored information. All this information is stored
in the data storage as a graph, that conforms the rules of the
Resource Description Framework (RDF). In accordance with
these rules all information is described by triples “Subject —

Predicate — Object”.

Nowadays there are three ongoing projects addressing
information security for the Smart-M3 based smart space.
The first project is based integrated mechanisms of triples
protection in the Smart-M3. This protection only works for
transactions, which modify the triples [2]. It means that par-
ticipants can protect triples to be inserted, updated or removed,
according to a special template. However all of the triples in
smart space still can be queried or subscribed.

The next project grants access permissions to triples like a
file system grants permission to folders and files. It is achieved
via mapping of all triples to a virtual file system and using the
filesystem’s possibilities of access control [3], [4]. Triples are
mapped to files and the triples hierarchy mapped to the folder
structure. Users are identified and authorized in the smart space
through host identity protocol (HIP) [5], [6]. This approach
provides rather flexible access control. At the same time, it is
quite difficult to define user groups and to configure access
permissions for all the files and folders since the project uses
the discretionary access control model, which becomes very
complicated in a dynamic system like a smart space with a lot
of users and resources.

The last project aims to provide a mechanism to grant
access permissions based on the user’s context [7]. The fol-
lowing scheme of secure access to smart space resources has
been proposed. The participant is identified by the system
when registered in the smart space. The unique identifier is
generated and saved in the access control broker. The public
and private keys are generated using the RSA algorithm. A
consumer service (the service of the participant) sends request
to the public smart space to access some private information
from service provider and subscribes to the corresponding
response about the access granting. The smart space service
provider accepts the request and calls a special access control
broker service for the access permission. The access control

ISSN 2305-7254

PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

broker confirms that this consumer is authenticated and applies
the rules from the security policies to assign the role to the
participant. The access permission is granted based on the role
of the participant and then is sent to the smart space service,
which requested it, through the virtual private space. Usage of
the context for assigning roles makes the model more flexible
and appropriate for services in the smart space.

The rest of the paper is organized as follows. Section
2 describes the ridesharing service. Section 3 presents basic
elements of the context-based access control model such as a
context, participant roles, main model rules, and the model
scheme. Section 4 provides a configuration of the access
control model for the ridesharing service.

II. RIDESHARING SERVICE

As it has been mentioned earlier, the ridesharing service
helps to search fellow-travelers for a joint trip [8]. It is based
on the idea of joint traveling and provides automation of the
joint trip search. The ridesharing service receives various data
from smart space and finds overlaps in users paths, interests,
and preferences. Using this information the service constructs
a set of instructions for each user, which consists of possible
fellow-travelers, meeting points, meeting time, travel cost and
other.

The ridesharing service consists of two main parts: a client
application and ridesharing broker. The interaction between
these parts is achieved through the smart space, based on the
Smart-M3 platform.

The client application can be installed on user’s mobile
devices with Android operating system, which is one of
the most popular mobile operating systems in world at the
moment. The main functions of the client application are:

e Collecting various information from the user and
sending it to the smart space.

e Receiving information about joint trip from the smart
space and presenting it to the user.

The client application’s working scenario is shown in Fig.
1. There are two main sources of route information. First is

Analyzing

calendar and/or
notes = T
Transferring
\‘ information to the

Receiving route with |
ridesharing

Application

launch smart space

Inputting
information
about route

Processing gathered
information
by ridesharing
information broker

Fig. 1. Client application working scenario

the user’s calendar. After the application has been started once,
it analyzes all existing information about meetings, places to
visit, etc, depersonalizes it and publishes it to the smart space.

149

If there is no information in the calendar then application waits
for a user input. The user should input the information about
his/her planned route, which is then processed and transferred
to the smart space, where it is used for finding a fellow-traveler.
When the fellow-traveler is found, the user receives (through
the subscribe transaction) information about possible joint trip
and can agree with the trip or decline it.

The ridesharing broker is a software, installed on com-
puters with high computation capabilities. Its main function
is receiving information from the smart space and finding
matches between ridesharing service’s users paths. Finding
such matches is a very complicated task that needs a lot of
computational power and not energy safe. Therefore, this task
is performed on a specialized computers.

For the service interoperability an ontology, describing
main entities has been introduced. The macro level ontology
is based on integration of components of the mobile devices’

ontologies (Fig.2).

is_a is_a is_a

— —has-—— Actor —has- Path

3
o}

Vehicle
isa isa isa role role
Family car Passenger

Fig. 2. Ridesharing service ontology on the macro level

consists_of

Driver

8
g

The ridesharing service ontology consists of three main
components: vehicles, actors and paths.
A. Vehicles

The vehicles are:

e cars with no more than four vacant seats;
e family cars with 5 to 8 vacant seats;

e buses with 9 and more vacant seats.

B. Actors

The actors are: drivers and passengers. All of them have
vehicles and paths. For example, driver has his/her own car and
several points defining his/her home, work and other locations.
Passenger may prefer some vehicle type and has points of
home, work, and other locations. The entity class “actor”
consists of (Fig. 3):

e ID. Unique ID for each user;
e Name. First and last name of the user;

e Point. Path point belong to the user (at least two: the
start and the end);

e Delay. Maximal possible time of waiting in the meet-
ing point.

The entity class “Driver” is a subclass of the class “Actor”
and inherits all its properties with two own properties:

PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

hm has hds

Fig. 3.

Entity class “Actor”

e Vehicle. Vehicle type;

e Detour. Maximal detour from the shortest path.

The class “Passenger’” is a subclass of the class “Actor” and
inherits all its properties with own property “Defour” the same
as in the class “Driver”.

For the path definition the set of points is used. This set
is an ordered list of key points obtained as a result of the
shortest path searching algorithm (e.g., Dijkstra or A*). The
class “Point” has the following structure (Fig. 4):

e PreviousPoint. Contains the previous path point. For
the start point its value is “FALSE”;

e Latitude;
o Longitude;

e DriveByVehicle. If the point belongs to the passenger,
it contains the driver who gives a ride to this passenger.
If the passenger walks then its value is “FALSE”;

e VacantSeats. The number of vacant seats in vehicle in
point;

e VacantltemPlace. The number of vacant places for
cargo items;

e Date. Date, when the user will be at this point;
e Time. Time, when user will be at this point;

e Wait_time. How long the user will be waiting in this
point.

Point
el
@uuh Point

—
— $ as
hins s
has !
\ i \r\ II‘TI]II{.
Latitude Date
(Brive @:[mnr‘l ace

\llr::_'clﬁ_v Vehicle

L ﬂ]]l..llllllL I'nm.

Fig. 4. Entity class “Point”

Since the ontology in the Smart-M3 is represented in RDF
standard, user description in smart space looks like follows:

(‘userl’, ‘name’ ‘Arthur P. Dent’)
(‘userl’”, ‘is_a’, ‘Driver’)

(‘userl’”, ‘vehicle’, ‘Car’)

(‘userl’, ‘social_network ‘Facebook’)
(‘userl’, ‘social_network_id, ‘a.dent’)

150

(‘userl’, ‘point’, ‘userlpointl’)
(‘userlpointl’, ‘x’, '60.0363")
(‘userlpointl’, ‘y’, '30.3677")
(‘userlpointl’, ‘date’ *01.10.2013")
(‘userlpointl’, ‘time’ *10.00"7)

(" ‘vacantseats’, 2)

(‘vacantitemplaces’, 3)

userlpointl’,
‘userlpointl’,

‘userl’, ‘point’,
userlpoint2, ‘x’, '59.80726")
‘userlpoint2’, ‘y’, '30.38291")

(‘userlpoint2’)

(

(

(‘userlpoint2’, ‘date’ *01.10.2013")
(

(

(

\

‘userlpoint2’, ‘time’ V12.427)
‘userlpoint2’, ‘vacantseats’, 2)

‘userlpoint2’, ‘vacantitemplaces’, 3)

This example shows a situation in the ridesharing service,
when the user ‘Arthur P. Dent’ with a page in the Facebook
social network, drives by car from pointl to point2 at the
defined time and ready to pick up two passengers, which
moving in the same direction. In [9] the logistics service
ontology is described in detail.

III. CONTEXT-BASED ACCESS CONTROL MODEL FOR THE
SMART SPACE RESOURCES

According to [10] the security and privacy in the smart
space should support a flexible, descriptive and well-defined
policy language, and be able to take into consideration a
context information. The context is defined as any information
that can be used to characterize the situation of an entity, where
an entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including
the user and applications themselves [11].

The context-based access control model, proposed in [7],
meets these requirements. It is built based on the combination
of the role-based (RBAC) and attribute-based access control
(ABAC) models. These models use roles and attributes as a
base for the access granting decision. The roles are static and
set up by a system administrator. The context-based access
control model is closer to the ABAC model, but also uses
roles, which are assigned dynamically based on the user trust
level and help to manage access to the resources. The trust level
calculation is based on the participant’s context, which includes
attributes, identifying the user (user ID and public key); user
location; current date; device, which requests the informatio;,
etc. A special smart space service implemented within the
access control broker has been proposed for this model. This
service grants access to the resources for the smart space
services guided by the security policies. According to this
model the public information can be published to smart space
and processed by all participants, but the private information
is provided only for appropriate participants through virtual
private spaces when the corresponding access permissions are
granted [7].

The context of the smart space participant consists of
the physical and virtual components (Fig. 5). The physical
component is due to the fact that each participant in the smart
space is also represented in the physical environment, which
requires the processing of its properties from that environment.

PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

Smart Space participant’s
context

Virtual

Physical

User ID and
Digital Signature

Fig. 5. Components of smart space participant’s context

The physical component includes: geographical location of
the device, date and time, type of a device. Using this informa-
tion, the smart space services can determine the current user
location, and time of the information access. It enables granting
different access permissions from different user locations.

Virtual component of the context is due to the fact that
each smart space participant interacts with others, and is
characterized by a set of attributes that characterize it in a
smart space. This component includes software used by the
participant for accessing the smart space, digital signature (the
participant’s identifier and the identifier encoded by the private
key), and public key. This information enables authentication
and authorization of the participant and provides encoding of
the private data. For the Web-community the participants add
a social component to the context (Fig. 6). This component
includes, for example, position in the company, social relation-
ships. The social component of the context enables granting
access to the employees at different positions with the different
trust levels, some private data can be shared only between
friends, etc. All components of the context are collected and
stored on the smart space devices. They become available upon
the request of the access control broker.

General scheme of request process is presented below
in Fig. 7. In this scheme the smart space consists of: a
participant, which requests the information; a service, which
provides this information; and an access control broker, which
provides access permissions to the participant based on its
context. The information flow between the participant and the
service becomes private due to the virtual private space, which
has no intersections with the public space. The participant
publishes the request to the public smart space for accessing
private information (in the RDF notation) and subscribes to the
corresponding response about the access granting. The smart
space service accepts this request and calls the access control
broker for the access permission decision making.

The access control broker reads the participant’s context
and verifies its digital signature using the open key. If the
signature is correct, the broker confirms that this user is
authenticated and applies the rules from the security policies
to assign the role to the participant. The access permission
is granted based on the role of the participant and then is
sent to the smart space service, which requested it. If the
access to the resource is granted, the smart space service
creates a virtual private space. The information requested by
the participant is transferred to this private smart space. The
connection information (space IP, space port and space name)

151

Smart Space participant’s
context

Physical

Fig. 6. Components of smart space participant’s context in case of participant
is a member of the Web-community

is encrypted via the open participant’s key and is sent to the
public smart space. If the access is denied, the service sends
the corresponding notification to the smart space participant.

Participant, who sends the information request, gets the
notification via the Smart-M3 subscription mechanism. If the
access is granted the participant decodes the encoded data
with its private key and creates a connection to the specified
virtual private smart space. When the requested information is
transferred the virtual private space is destroyed.

IV. ACCESS CONTROL MODEL FOR RIDESHARING
SERVICE

The example of the user description in the ridesharing
service from section II includes private information about
that user. First, there are no people who want to be tracked.
Without the access control, every user can collect locations of
other users and predict the future steps for different purposes.
Also, there are no people who want to share their real names
and social networks information for everyone. Collecting any
information about any person is also restricted by law of any
state. The access control broker for ridesharing service has
been developed to prevent the collecting information about
users of this service by criminals.

The following conceptual model of the ridesharing service,
which includes the access control broker, has been proposed
(Fig. 8).

The ridesharing service consists of: participants, which are
drivers and passengers; ridesharing brokers, which search for
matching paths between participants; and access control bro-
ker, which grants or denies access to participant’s information
based on the context of the requesting user.

A. Defining context

The user’s context can be defined using the ontology of the
ridesharing service parts. This subsection describes the main
context components and provides information about how these
components can be used in the context-based access control
model.

1) Physical part: The physical part of the user’s context
consists of:

e User’s Location consists of latitude and longitude and
allows building routes for ridesharing and defining

PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

Virtual Private Space

Private information flow

/

/

Private information
flow

Smart Space
Service

Access level query

Information query

Access permission

answer

R Access
Control Broker

Public Smart Space

Fig. 7. General scheme of context-based access to Smart space resources

place, which the user tries to access the information
from;

e Date and Time allow to provide access permission and
search fellow-travelers in specified time interval .

2) Virtual part: The virtual part of the user’s context
consists of:

e /D used as a part of identifier of the user in the service.

e User’s authentication information, such as password,
private key, certificate, etc. This is a main component
in any authentication protocol. Software and device
fingerprint can also be used as a part of authentica-
tion information, because of several combinations of
the software configuration are unique and all mobile
devices have unique IMEI code and most of them have
unique hardware configuration.

3) Social part: The social part of the user’s context mostly
collected from different social networks, such as Facebook,
VKontakte, Google+ and consists of:

e Role in service that can be driver or passenger. Allows
to provide information only for specified roles and
search fellow-travelers.

e Information from the social networks that includes
the common information about user, such as name,
surname, date of birth, birth place, common interests,
etc. On its base the service can use filters defined by
users, for example, filter users who are not younger
than 20 years old or have more than 50% merging in
interests.

152

Access Control Broker

Security policies

B. Rules definition

The participant’s context is used to define the trust levels
assigned with its role. Usage of the user roles allows to
simplify policies and make them human-readable and easy to
configure. Each component of the context is associated with
the trust level. This level is represented by a number in the
range [0, 1] and depends on the context of the current situation.
For example, the trust level of ‘0.1’ and ‘0.9’ can be assigned
for access from the different user’s locations respectively. It
means, that the user, who lives, for example, in the Saint
Petersburg, Russia can grant access to the private information
for users in the nearest regions (Russia and Finland) who will
have high trust level (0.9) and restrict it for users from other,
farthest regions (China, North Korea) who will have low trust
level (0.1).

L Ridesharing
Brokers

Acccgs T
Control ity j
Broker J
a 2

B »

L J
i

Passengers

Fig. 8. Conceptual model of ridesharing service with access control

PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

The logical function taking into account trust levels of all
appropriate context components is used to assign a role to the
participant. Proposed ridesharing service has five main roles:
owner, trustedPassenger, untrustedPassenger, trustedDriver, un-
trustedDriver. The trustedPassenger and trustedDriver are sep-
arate roles, because in this case they can control information
access for other passengers and drivers. For example, the
driver can show his/her information only to passengers, not
to the other drivers. If the user has untrusted role, then
he/she can access only the common information, which cannot
compromise any other user. The owner is a person who sharing
the information, so he can read, write and edit it.

1) TrustValue rules: These rules are used to assign the
numeric trust value to the context component. The following
example shows rules of this type:

TrustValue (isPassenger == true) = 1;

TrustValue (isPassenger == false)

Il
o
~

TrustValue (108:00’
‘17:007) = 0.8;

< currentTime <

TrustValue ('08:00’ > currentTime >

*17:00") = 0.2;

TrustValue (currentLocation ‘in set’

[Russia, Finland]) = 0.9;

TrustValue (currentLocation ‘in set’
[China, North Koreal]) = 0.1;

TrustValue (commonInterests ‘more than’

1/2) = 0.7;

TrustValue (commonInterests ‘less than’

1/4) = 0.3;

TrustValue (birthDateAccept ‘before’ 1985)
= 0.8;

TrustValue (birthDate ‘after’” 1985) = 0.2;

etc.

Most of the rules are set as user’s preferences in his/her
profile while configuring the application. In this way the
user shares information about his/her preferences with other
service participants using the mobile application. The access
control broker interprets this information and makes a decision
about granting access permission for other users based on the
predefined rules. Also, this information is used by ridesharing
brokers to find the best path matches, according to the user’s
interests and preferences.

153

The trust level values are set by the security service and
based on the estimations of the security service provider’s
experts according to the features of the particular smart space
service.

2) AssignRole rules: These rules are used at the time
of access request. They have a form of logic equations.
The following example presents the situation when the role
“trustedPassenger” is assigned only if the user is a passenger,
his/her current location is Russia or Finland, the time is
from 8 am to 5 pm and his/her birth date is before 1985. If
the user doesn’t satisfy this rules then the next rule is checked.

AssignRole (trustedPassenger)
(TrustValue (isPassenger) = 1 &

(TrustValue (currentLocation € (0.7, 1))

& (TrustValue (currentTime) € (0.6, 1))&
(TrustValue (birthDateAccept) € (0.7, 1)).
AssignRole (untrustedPassenger) =
(TrustValue (isPassenger) = 0 &
(TrustValue (currentLocation € (0.1, 0.5))
& (TrustValue (currentTime) € (0, 0.6))&
(TrustValue (birthDateAccept) € (0, 0.7)).

etc.

The same rules are defined for the driver role.

3) Permission rules: These rules contain access control
policies, which determine whether a participant with a certain
role is allowed to access a particular resource type or not.
These rules are also set up by the users in their preferences.

Permission (trustedPassenger) =
"readCommon", "readPrivate";

Permission (untrustedPassenger) =
"readCommon" .

etc.

C. Access control broker implementation

The access control broker for ridesharing service has
been developed using Python programming language. As an
example, situation of two users, trying to get access to the
information about each other, is described. There are following
rules for access permission granting: users should be friends or
have a mutual friends and both should be in the same region.

First, it is needed to configure the TrustValue rules in the
access control broker. In Python it looks as follows:

trustValue_rules =
{‘friendship’: {‘friend’:0.9,
‘not_friend’:0.1},
‘is_a’: {‘Driver’:0, ‘Passenger’:1},
‘currentLocation’:{Russia:O.S,

PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

Finland:0.8, China:0.1, North Korea:0.1}

}

Then, the ranges for assigning roles and allowed actions
for role actions need to be configured:

ranges_for_roles =
{‘trustedUser’ :

{“friendship’:[0.8,1], ‘is_a’:[1],
‘currentLocation’ : [0.7,11},
‘untrustedUser’:
{‘friendship’:[0,0.79], ‘is_a’:[0],
‘currentLocation’ : [0,0.71},

role_actions =
{‘trustedUser’:

[‘read_private_inf’, ‘read_only_public’],

‘untrustedUser’: [‘read_only_public’] }

The main functionality of the access control broker has
been realized via the following algorithms. The first one is a
“formalize_context” algorithm. It is used for collecting user’s
context and processing it to the trust levels (Algorithm 1).
This algorithm works by the following way: it extracts context
components from the smart space and other possible sources
(like a device information, social networks, etc.) and applies
rules assigning trust levels to the each context component. The
result of algorithm is a map (an array of “key:value”) with
corresponding context component as a key and it’s trust value
as a value.

Algorithm 1 formalize_context

Require: {userl_information #)
and user2_information #)
and trustValue_rules # ()}
context = {}
for all key in trustValue_rules do
if key == “friendship” then {Special feature}
if userl_information[”social_network_id”] in
userl_information[friend_list] then
context|”friendship”] =
trustValue_rules[friendship”][”friend”’]
else
context|”friendship”] =
trustValue_rules[”friendship”][’not_friend”]
end if
else
contextlkey] =
trustValue_rules|keyl[userl_information[key]]
end if
end for
return context

The second algorithm is a “ser_role” (Algorithm 2). It
assigns roles to the user based on the output of the “formal-

154

ize_context” algorithm and the “AssignRole” rules, defined
before. The result of this algorithm is a set of user roles which
are satisfy rules.

Algorithm 2 set_role

Require: {user_context # ()
and ranges_for_roles # ()}
user_roles =]
for all key in ranges_for_roles do
OverallFlag = true
for all key2 in ranges_for_roles[key] do
OverallFlag = OverallFlag and
(ranges_for_roles|keyl[key2][0] < user_context[key2])
and
(ranges_for_roles[key][key2][1] > user_context[key2])
if OverallFlag then
user_roles.append(key)
end if
end for
end for
return user_roles

The third algorithm checks the permissions, which belong
to the role, and compares them with the permissions needed
to access the queried information (Algorithm 3). If this per-
mission matches, then the permission is granted and user who
requests the access can read this information.

Algorithm 3 set_actions

Require: {user_role # ()
and role_actions # 0}
allowed_actions = ||
for role in user_role do
allowed_actions =
list(set(allowed_actions) U set(role_actions[role)))
end for
return allowed_actions

V. CONCLUSION

In the first versions of the smart space ridesharing service,
the information sharing has been implemented without any
restrictions. For the wide usage of the service, it was needed
to provide a mechanism that allows ridesharing service users
to restrict access for their private information. This paper
describes such mechanism that uses the context-based access
control model. This model allows users to share their private
information only with persons they trust via using the easy-
configurable preferences. The ontology of the ridesharing
service has been used for defining the context of the service
users. Rules for each group of users has been configured and
roles have been defined according to the model. These roles
allow providing flexible access control to the user’s private
information.

ACKNOWLEDGMENT

The presented results are part of the research carried
out within the project funded by grants # 13-07-12106, 13-
01-00286, 13-07-00336, 13-07-00039, 13-07-13159, 13-07-
12095, and 13-07-00271 of the Russian Foundation for Basic

PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

Research and grant # 12-04-12062 of the Russian Foundation
for Humanities.

(1]

(2]

[3]

[4]

[5]

REFERENCES

J. Honkola, H. Laine, R. Brown, O. Tyrkko, “Smart-M3 Information
Sharing Platform”, in Proc. IEEE Symp. Computers and Communica-
tions (ISCC’10), IEEE Comp. Soc., 2010, pp. 1041-1046.

A. D’Elia, J. Honkola, D. Manzaroli, and T. Cinotti, “Access control
at triple level: specification and enforcement of a simple rdf model
to support concurrent applications in smart environments”, in Smart
Spaces and Next Generation Wired/Wireless Networking, 2011, pp. 63-
74.

K. Yudenok, “Smart-M3 Security Model,”. in Proc. of 11th Conf. of
Open Innovations Assoc. FRUCT, Apr. 2012, pp. 210-211.

K. Yudenok, I. Nikolaevskiy “Smart-M3 Security: Authentication and
Authorization Mechanisms,”. in Proc. of 13th Conf. of Open Innovations
Assoc. FRUCT, Apr. 2013, pp. 153-162.

A. Gurtov, M. Komu, and R. Moskowitz, “Host Identity Protocol (HIP):
Identifier/locator split for host mobility and multihoming”, in Internet
Protocol Journal, vol. 12, no. 1, Mar. 2009, pp. 27-32.

155

[6]

[7]

[8]

[9]

[10]

[11]

R. Moskowitz, P. Nikander, P. Jokela, T. Henderson, “RFC 5201: Host
Identity Protocol”, Web: http://tools.ietf.org/html/rfc5201

A. Smirnov, A. Kashevnik, N. Shilov, N. Teslya, “Context-based Access
Control Model for Smart Space”, in 5th Int. Conf. on Cyber Conflict
(CyCon 2013), June 2013, pp. 47-62.

A. Kashevnik, N. Teslya, N. Shilov, “Smart Space Logistic Service for
Real-Time Ridesharing”, in Proc. of the 11th Conf. of Open Innovations
Association FRUCT, Apr. 2012, pp. 53-62.

A. Smirnov, A. Kashevnik, N. Shilov, H. Paloheimo, H. Waris, S.
Balandin, “Smart Space-Driven Sustainable Logistics: Ontology and
Major Components”, Sergey Balandin, Andrei Ovchinnikov (eds.),
in Proc. of the 8th Conf. of Open Innovations Framework Program
FRUCT, Nov. 2010, pp. 184-194.

J. Al-Muhtadi, A. Ranganathan, R. Campbell, M.D. Mickunas, “Cer-
berus: a context-aware security scheme for smart spaces”, in Pervasive
Computing and Communications. (PerCom 2003). Proc. of the 1st IEEE
Int. Conf., 2003, pp. 489-496.

A.K. Dey, D. Salber, and G.D. Abowd, "A Conceptual Framework
and a Toolkit for Supporting the Rapid Prototyping of Context-Aware
Applications,” Context-Aware Computing, A Special Triple Issue of
Human-Computer Interaction, vol. 16, 2001.

