
Developing of energy resources accounting and
controlling system for the Internet of Things

Sergey Popov, Evgeny Chernyy
NRU ITMO

Saint-Petersburg, Russia

sp, ech@winghouse.ru

Abstract—Currently there are actively developing services
implementing Internet of Things [1]. Such services allow to
delegate controlling and monitoring tasks over heterogeneous
devices to the cloud. Because of interconnectivity, connecting
devices to single cloud opens up new possibilities in controlling
complex systems based on real-time data analysis, predicting
accidents, etc. In this paper we will describe our experience
on developing and introduction to the manufacturing facility of
accounting and controlling of energy resources system.

Keywords—Internet of Things, M2M, Energy savings, Utility
meter data collecting, Smart Grid.

I. INTRODUCTION

Accounting of energy resources is a vexed problem for
enterprises in Russia. For instance, according to latest gov-
ernment regulations [2], all companies having peak electricity
consumption above 670 kW are mandated to switch to an
hourly rate of pay. The problem is that electricity meters
available on the market do not provide per-hour measurements.
So, such companies have to use third-party solutions for
automatic accounting and control of energy resources or to
develop their own. In our company we are working on such a
solution for enterprises.

In this paper we discuss the system that we developed for
“LenPoligraphMash” [3] facilities. It is based on our research
in connecting and controlling of devices over the Internet. We
have developed hardware and software that can poll data from
many kinds of utility meters, transmit it to the server for further
processing and receive control commands from it.

II. IOT IN THE ENERGY SECTOR

According to authors [4] “IoT becomes the natural enabling
architecture for the deployment of independent federated ser-
vices and applications, characterized by a high degree of
autonomous data capture, event transfer, network connectiv-
ity and interoperability”. Implementing such services on big
manufacturing facilities and city environments will allow to
move from passive observation of to active participation in
production processes. Also IoT enterprise services based on
open standards will allow to apply “horizontal” approach
in M2M development [5], where key components of M2M
application/device development (e.g. hardware or software
interfaces) are standardized and hardware or software products
by different vendors can be interchangeable. Some IoT tech-
nologies like OWL [6] and RDF [7] are the good candidates
to be a unified software interfaces for M2M systems.

First step to deploy such service at facility is to implement
energy flow monitoring system. It will show ineffective parts
of energy system and allow to improve them by eliminating
flaws produced by the human factor (e.g. incorrect electricity
meter connection).

Second step is introducing of controlling functions to the
existing monitoring system. It will allow to implement Smart-
Grid analog for local facility to prevent energy consumption
overheads. For example, central server could disable least
important electricity consumers or disable non-critical lights in
the offices when overall day electricity consumption is getting
to the upper limit.

Next, after several facilities implement monitoring and
controlling functions, they will be able to communicate with
electricity supply companies. On this step facilities can send
streams of energy consumption data in real-time to these
companies for more accurate energy consumption planning.
Also electricity suppliers, when some failures occurs that
leads to lowering levels of generated energy, can send alarm
messages to all users with recommendations to temporary
lower energy consumption and avoid failure of entire energy
network.

III. HIGH LEVEL ARCHITECTURE

Our system implements (Fig. 1) common scheme of plug-
ging devices to the server, also used by some SmartGrid
[8] and M2M [9], [10] systems. It supposes that standard
equipment (utility meters, home appliances, etc.) is connected
to the server through a hardware agent that can poll data from
and control the equipment.

Such scheme, where independent hardware agent is con-
nected to equipment, allows to quickly react to abnormal
situations by sending alarming messages to the server without
waiting for the next server request.

Today for resource consumption accounting often used
another scheme, where utility meters, equipped with GPRS
modules, are remotely requested by the server to get per-day or
per-month data. Such scheme is easier to deploy on facilities,
because devices already have tools to work with them. For
example, some electricity meter manufacturers provide special
software for viewing state of their devices, equipped with
GPRS. The main disadvantage of this scheme is impossibility
of obtaining important information without creating request

___________________________________________________PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



Fig. 1. Our implementation of common device connecting scheme

from the server. In our implementation hardware agent can au-
tonomously define conditions where server should be notified
about the situation in current facility and send only important
data.

IV. COLLECTING DATA FROM THE DEVICES

A. Overview

Our system for automatic metering and control of en-
ergy resources (Fig. 2) consists of the following components:
electric meters, polling devices (Fig. 3), the server and its
generated DBF files. We use RS485 or CAN for communi-
cating between meters and the polling device and Ethernet for
sending collected data to the server. One detail that confused us
during development of a polling device is that some electricity
meters has CAN transmitter, but in fact does not support CAN
2.0B [11] and all its features of like collision resolution and
detection, checksums, addressing, etc. Following the standard,
a CAN transmitter should send echo to the controller for
collision discovery or a confirmation bit, so that the receiver
returns that echo from transmitter back to controller.

We also had to make some modifications to regular plug-
ging scheme (Fig.4) of CAN transmitter to use it on the simple
RS485 bus.

B. Polling data

Polling devices constantly poll data from meters on the bus
one by one, using counter’s custom protocol. Because polling

device is built on a simple 8-bit controller with 2 kB of RAM,
polled data is converted to JSON as it comes to the device and
is uploaded to the server over TCP.

We used JSON for sending data from polling devices to
the server, because it is not memory expensive to work with
on 8-bit controllers, human-readable and flexible enough to
transmit data from many meters in one packet. Before JSON,
we used a key-value format but it is not usable when dealing
with more than one meter on the bus. We do not use XML
because it is costly to process on 8-bit controllers (need open
and close tags, etc).

To ensure stability of the system and provide debug infor-
mation we collect additional data from the meters. Among the
most important indicators is the uptime, which is represented
by a similarly named field that ends each JSON packet. We also
add the meter’s time readings to the packet, because polling
device doesn’t have a power-independent clock. Manufacturing
date of the meter indicates the time of its next maintenance
check. Serial number serves as a unique key on the bus and
identifies physical location. In addition, in the packet there is
debug information, for example, a flag indicating whether or
not connection to meter was completed successfully. If some
error occurs while reading data from the meter, or a checksum
is incorrect, polling device sends low-level debug information
to the server with all bus metadata for logging.

Since electricity bills are issued on a monthly basis, it
is important to summarize meter readings by the end of the
month. Counters we work with store all data in its internal
memory over the year, but it is not efficient to transmit all the
data on each request. Instead, when polling device connects
to the server for the first time, in its first JSON packets all
data from meters is transmitted to the server, so that any server
will have data from all meters before receiving current metrics.
This feature is very valuable during initial installation of our
system when we need to preload the database with data on
earlier periods or when our system had been offline.

C. Extending JSON packet format

Facing the need to scale our system, it became clear that
our JSON format was not detailed enough despite its already
large packet size. We decided to make each packet a self-
sufficient unit, so that by reading it, the server could determine
all the information needed for further processing. Each packet
should contain the ID number of polling device, meter model
and customer data (e.g. name of organization). This data may
be very useful in debugging, so that we can localize the
problem just by analyzing logs.

Another reason for using the extended packet format is that
each polling device could work with heterogeneous devices,
e.g. electric and water meters produced by different vendors.
This unifies the way to process data on the server and delegates
all responsibility for using proprietary device protocols to
polling devices.

At present time, this extension is under development.

D. Examples of JSON packets

The following two messages are examples of JSON
packets that server receives from polling devices. The first

___________________________________________________PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 108 ----------------------------------------------------------------------------



Fig. 2. Schematic representation of system for automatic counting and controlling of energy resources

Fig. 3. Arduino-based polling device. RS485 shield developed by our team

Fig. 4. Example of connection CAN transmitter to RS485 bus

message exemplifies a regular message and the second is a
debug message sent by polling device when it fails to find a
meter.

{
‘‘CounterAddress__‘‘ : 95,
"LoginAction__" : "Logged in",
"SerialNumber__" : 13535895,
"ManufactureDate__" : "5-2-13",
"Timestamp__Date" : "14-8-13",
"Timestamp__Hour" : 18,
"Timestamp__Min" : 25,
"Timestamp__Sec" : 28,
"Now_Power_P_SUM_____value" : 28.82,
"Now_Power_Q_SUM_____value" : -26.2,

___________________________________________________PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 109 ----------------------------------------------------------------------------



Server TCP stream

Counters hardware bus

USB or Serial stream

Main

Loop

Poll function
Search function

Automaton for maintenance connectionBus lib

JSON generatorCRC

Multi printer

Fig. 5. High level architecture of polling device firmware

"Now_Power_S_SUM_____value" : 38.96,
"Now_Voltage_Phase_1_value" : 11.15,
"Now_Voltage_Phase_2_value" : 0.0,
"Now_Voltage_Phase_3_value" : 239.13,
"Now_PowerFactor_SUM_____value" : 0.739,
"Now_Frequency_value" : 50.01,
"Uptime" : "30039"
}
{
"type" : "debug",
"Address" : "0x5Eh",
"CountersSearch_SearchRequest_Error" : "No
answer from - 94",
"CountersSearch_SearchRequest_Buffer" :
"5E 0 39 D0 ",
"Uptime" : "27998"
}

V. POLLING DEVICE FIRMWARE PROGRAMMING

Main challenges in programming polling devices were
providing fault tolerance and correctness of collected data
combined with ease of use and installation for the non-
programmer service staff.

Critical parts of code, such as network connection manager,
use automata-based programming principles. Robust imple-

mentation of states lowers the risk of programming error,
increases stability of the program and makes debugging easier.

A. High level architecture of firmware

Polling device firmware consists of two main modules (Fig.
5), “Main” and “Loop”. The “Main” module is responsible
for bootstrapping the device, including initialization of all
outgoing connections such as serial port and Ethernet (by
DHCP). Also this module initiates the search of meters, already
discovered in previous sessions.

“Loop” module works in an infinite loop – this is where
the state machine mentioned in previous section operates. Its
main function is handling of TCP connections, polling and
discovery of the meters.

Meters are polled on several levels. At top level of data
processing, the device generates a request command, sends it
and passes the response to JSON generator. The middle level
is responsible for generation of polling packets. It composes
a request packet, adds meter address and computes checksum.
After that, the message is transmitted to the transport layer, and
sent to target meter over the bus. After receiving a response
from the meter, the device compares actual length of the
received packet with the expected one. Since response length
is known at the moment of sending the request, we may
optimize network polling process and avoid 200 ms timeout
while waiting for all network buffers to become full. Polling

___________________________________________________PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 110 ----------------------------------------------------------------------------



device checks address of the responding meter and checksum
of the packet. If validation errors occur, this fact will be logged
by sending data to JSON handler and server.

JSON generator has three main functions: start new packet,
transmit a value and finish packet. Every time a polling device
starts polling of a meter, JSON generator starts new packet, and
after receiving last chunk of the data from meter, JSON packet
is finished. Only one meter can be polled at a time, embedded
JSON packets are not allowed. When packet is closed, no
other transmissions are allowed. Thanks to such rules, if some
debugging information is generated while reading data from
the meter, it is guaranteed that it will be included in the packet
that belongs to the polled meter. JSON generator writes packets
to a universal printer, which may be configured for outputting
data over TCP or any serial port of the controller, so that we
can debug the device even when network is not available.data
though TCP or any serial port of the controller, so we can
debug device even when network is not available.

B. Counter discovery

To provide easy installation of new devices to already
working system, simple algorithm of searching available coun-
ters on RS485 bus was implemented. For this purpose, the
firmware reserves a permanent region of memory of 256 bits,
one bit per each possible meter address.

Meter discovery is performed while polling data from
already known meters. After each poll request device sends
discovery requests to the bus, so that when new a meter appears
on the bus, polling device would soon discover it and would
start collecting data from it.

After powering on, the polling device first scans known
addresses from last session and checks their availability on
the bus – this facilitates a faster start compared to scanning
all possible addresses every time. If polling device starts in
a new location, previously known meters would not be found
and would be deleted from the list. Installed meters would be
found gradually.

If a meter stops responding, the polling device will continue
to send it requests. This was designed intentionally, because
there is no way for a device to know if a meter is disabled
or removed by staff or it is out of service because of internal
failure.

C. Automatic server connection

To implement a plug and play solution, we need to make
polling devices capable of automatically connecting to the
server. We considered several options for implementing this
functionality:

• Using DHCP to determine the address of data collec-
tion server on current network, akin to the approach
used in thin clients. Such a solution requires additional
server configuration.

• Using domain name and local DNS server. There is a
potential of packet delivery problems.

• Using broadcasting for server searching. Potential
problems with discovery packets delivery.

• Augment each polling device with server and MAC
addresses of configuration interface. Additional con-
figuration required by service staff.

D. Counter addresses collision

Because counter bus address is encoded in one byte it is
easy to find, but different counters may have the same address.
Address collision related errors are not obvious. For the polling
device, as first device on the bus, those errors appears as
checksum errors. When address collision occurs polling device
can access only that counter that physically located nearer than
others with the same address. We also can’t change counter
address from the polling device, because changes will occur
on all counters on the bus. In this situation we had to change
counter address manually with help of manufacturer special
equipment.

VI. DBF FILES MANAGEMENT

Current implementation of the system we developed for
“LenPoligraphMash” collects all data from electricity meters to
DBF files, which later processed by “1C Arenda” system [12].
The 1C system was chosen by the client as the most popular
accounting system in Russia. DBF files are a convenient way
for exporting data into the 1C system. Other capabilities,
such as COM objects, were deemed unreliable due to low
fault tolerance of the 1C system, which often leads to system
freeze and data corruption. For large enterprises, the following
indicators are most important:

• Hourly loads for power consumption forecasting.

• Power grid efficiency for monitoring electric trans-
former overloads.

• Meter readings for a period, for billing and monitoring
of total consumption.

Our clients analyzing data we collected by themselves in
1C system (Fig. 6 and 7).

Fig. 6. 1C report example, effectiveness of electricity consuming

VII. RESULTS

While working on the primary task of collecting electricity
consumption data on “LefPoligrafMash” facilities we found
that with our system we can detect a number of issues related
to electric circuits in building. One of the main problems we
found is loss of connection of one of the phases to the meter.

___________________________________________________PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 111 ----------------------------------------------------------------------------



Fig. 7. 1C report example, hourly consumption maximums, kW * hr

Because meters are connected to electricity supply though
a transformer, in case of absence even of a single phase
connection to a meter, it will not collect data, but the consumer
would still get electricity. In real situations service staff rarely
pays attention to the indicator lamp signaling absence of phase
connection. We may programmatically detect this by analyzing
data in such situations (zero or low voltage on the meter and
null angle between phases) and alarm staff about it. Such
alarming extension is also under development.

Our electricity accounting system replaces 4 man-days of
staff work – all data is collected from meters in only 30
seconds. Also, during development we discovered some issues
in the energy grid on the facility, which lead to incorrect
resource accounting. Our solution is several times cheaper than
similar solutions provided by other companies in our country,
because we did not resell proprietary products but develop
hardware and software by ourselves.

VIII. CONCLUSION

In our work was developed the system for collecting,
analyzing and presenting utility meters data, that integrates
to our IoT service.

IX. FUTURE WORK

We will continue to develop our system by improving
JSON message protocol, implementing alarming system and
adding water and heat metering to the accounting. Develop-
ment of own counters and Web of Things infrastructure is our
long term goal.

A. Ideas on improvement of accounting devices

During the development and deployment processes we
came to some proposals for enhancement of existing utility
meters. Most meters are passive – their main purpose is to
count consumed resources. They can be polled, but polling
methods are not well-documented and devices do not provide
discovery and collision resolution capabilities. Also, existing
meters do not notify about issues on the energy network
– we need to wait for request packet from polling device.
Obvious solution would be implementing CAN 2.0B on meters
by manufacturers. With CAN we can create a network of
intellectual agents on the facility, which can systematically
monitor situation of energy flow on the facility and control
energy overload and reactive power compensators. CAN uses
the same bus as RS485, so introduction of this protocol will not
complicate meter installation. Connecting such a network to
the Internet could allow SmartGrid technology implementation
on the facility.

REFERENCES

[1] S. Popov, D. Mouromtsev, “Development of a Distributed Semantic
Platform for Internet of Things and Internet of Devices”, in Proc.
of the 13th Conference of Open Innovations Association FRUCT and
2nd Seminar on e-Tourism for Karelia and Oulu Region Petrozavodsk,
Russia, 22-26 April , 2013 Publisher: State University of Aerospace
Instrumentation (SUAI), ISSN 2305-7254, 226 p.

[2] Russian Federation government regulation #442 from 04.05.2012.

[3] LenPoligraphMash’s official website, Web:
http://www.lenpoligraphmash.ru.

[4] L. Atzori et al., “The Internet of Things: A survey”, Comput. Netw.
(2010), doi:10.1016/j.comnet.2010.05.010.

[5] A. Metnitzer, “The “horizontalization” of the machine to machine
(M2M) world and how to market it”, MIPRO, 2012 Proceedings of
the 35th International Convention, pp.603,606, 21-25 May 2012.

[6] Web Ontology Language (OWL) official site, Web:
http://www.w3.org/2004/OWL/.

[7] Resource Description Framework (RDF) official site, Web:
http://www.w3.org/RDF/.

[8] K. De Craemer, G. Deconinck, “Analysis of State-of-the-art Smart
Metering Communication Standards”, in Proc. of the 5th Young Re-
searchers Symposium, March 2010.

[9] AnyBridge M2M Platform, Web: http://www.anybridge-
m2m.nl/anybridge-m2m-platform.

[10] Metrilog official website, End to end solutions for the M2M Market,
Web: http://www.metrilog.at/site/index.php/en/products-a-services.html.

[11] CAN specification, ISO 11898-1 2003, Web: http://www.iso.org/iso
/iso catalogue/catalogue tc/catalogue detail.htm?csnumber=33422.

[12] 1C Arenda official website, Web:
http://solutions.1c.ru/catalog/rentestate.

___________________________________________________PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 112 ----------------------------------------------------------------------------


