
Programming Android Client for Smart-M3
Applications: SmartRoom Case Study

Pavel Kovyrshin∗, Dmitry Korzun∗†
∗Petrozavodsk State University (PetrSU), Russia

†Helsinki Institute for Information Technology and Department of Computer Science and Engineering,
Aalto University, Helsinki, Finland

{kovyrshi, dkorzun}@cs.karelia.ru

Abstract—Smart-M3 is an open platform for constructing
smart spaces service environments. SmartSlog is a Smart-M3
SDK for ontology-driven programming; it targets a wide range
of computing devices. In this abstract we consider programming
issues for Android OS with SmartSlog and introduce a scheme for
developing mobile clients on the Smart-M3 platform. This generic
scheme is evaluated within a particular Smart-M3 application—
the SmartRoom system, which supports such collaborative activ-
ities as conferencing. SmartRoom clients run on end-user mobile
devices (e.g., Android smartphones) and serves as personal access
points to the system.

Keywords—Smart-M3, SmartSlog, Collaborative environment,
Mobile programming, Android OS.

The Smart Spaces paradigm defines a smart space as a
logical entity consisting of smart objects and enabling them
to cooperate with each other [1], [2], [3]. A smart object
is a physical/digital object that becomes, being augmented
with network capabilities, applicable to interact within a smart
space, understanding and reacting to the environment. A wide
class of smart objects can be constructed as client software
running on end-user mobile devices such as smartphones [4].

Our reference case is the SmartRoom system, which pro-
vides a shared smart space—SmartRoom space—for assisting
collaborative work activities such as conferencing [5], [4], [6].
A SmartRoom client makes the host mobile device a personal
access point to the system and its services. It allows a user to
join and leave the SmartRoom Space. The basic services for
SmartRoom users are Agenda and Presentation that provide
the most essential information part of conferencing, see Fig. 1
for screenshot examples. For the chairman additional functions
are available, e.g., using SmartRoom client the activity can be
started or finished, the Presentation slide show can be manually
controlled (in addition to the control from the speaker), or the
agenda is changed (talks insertion/update/removal).

Smart-M3 platform is used to construct a smart space [7],
[2]. SmartSlog SDK supports ontology-driven programming of
Smart-M3 applications [8]. As target end-user mobile devices
we consider smartphones and tablets with Android OS, which
are popular nowadays. In Smart-M3 terms, the software part
of a smart object is a knowledge processor (KP).

Android OS is Linux-based. For applications, the primary
programming language is Java. Essentially that GUI program-
ming is typically Java-based. Nevertheless, native code (C/C++

Fig. 1. Agenda and Presentation services: example representation in GUI on
the client side.

language) is supported for application logic. This feature
opens a way for programming Smart-M3 applications using
SmartSlog and its support of ANSI C programming language1.
Also the recent development progress of Qt framework for
Android OS leads to expectation that in near future GUI
development for Android application can be performed totally
with Qt, thus using C++ programming.

We assume that the client KP operates using the terms of
the problem domain. The latter is described by ontology. For
programming a SmartSlog-based Android client we propose
the following scheme (Fig. 2).

1) Client GUI is written in Java. GUI elements are con-
nected with the application logic using Java Native
Interface (JNI).

2) Client chunk of the KP application logic is written
in C using data structures that directly correspond
to the problem domain entities from the ontology
and smart space access operations parameterized with
those entities.

3) Application logic code uses the ontology library (gen-
erated by SmartSlog): data structures and variables
are related with the ontology entities, the library
provides functions for operations on the problem
domain data and for operations with the smart space.

1SmartSlog supports also .NET/C# programming, which seems less suitable
for Android.



Fig. 2. Structure of Android client KP code: Java-based GUI is connected
with C-written client application logic by JNI, SmartSlog ontology library
provides domain-oriented data structures and operations for accessing the
smart space.

KP application logic is C-written and uses data structures
and function of the SmartSlog ontology library. Integration of
the KP logic into the Android client uses NDK toolset. All
source files are added to the Android application project in
some directory (e.g., jni/). To compile them it is necessary
to prepare makefile Android.mk. It defines all sources and
flags needed for compilation and linking. The resultant object
files are assembled into a target library, which then can be
loaded by the following Java code:

static {
System.loadLibrary("library name");

}

JNI enables Java code to call or to be called by native
applications. All methods of the KP logic must be described
in a Java class with native modifier. JNI states specific
naming conventions, including project name and method name
as described in Java class. To implement these methods in KP
it is necessary to include corresponding header file containing
their prototypes. Javah utility is the best way to generate the
header file. Besides, it is important to include the SmartSlog
library header file to access functions of the library. It could
be done by including generic.h directly to KP module or
by ontology file header which contains such a declaration. For
linking GUI with native methods it is enough to write usual
class method call in widget implementation.

Let us consider the SmartRoom reference case (conference
in our example). A SmartRoom participant may join the
SmartRoom space as a registered user (one of the conference
speakers), a spectator (anonymous participant), or a chairman
(organizer of the activity). After performing login the mobile
client subscribes to Agenda and Presentation services [5]. That
is, if some changes occur the client will receive the notification
and react correspondingly.

The conference activity is controlled by its chairman, e.g.,
she/he starts and ends the conference. When the conference
started the clients update the conference agenda on own
displays. The current speaker is highlighted in the list. The
speaker’s mobile client receives the control on the Presentation
service and shows the first slide. The speaker can switch
the slides using the functions like “next slide” and “previous
slide”. The same function can use the chairman if needed.
When the speaker (or chairman) ends the current presentation
the control is moved to the SmartRoom client of the next
speaker. Similarly, all participants from their clients can watch
the current agenda or browse slides of any available speaker,
including the current presentation online. On the level of KP
logic, the above functions are based on subscription and update
queries to the SmartSpace and implemented with appropriate
smart space access primitives from the SmartSlog ontology
library.

The Android client for the SmartRoom system is avail-
able at http://sourceforge.net/projects/smartroom/files/clients/
android/. The proportion of Java and C code is about 60:40. It
includes proper application code: the code is not automatically
generated by SmartSlog SDK and lines with comments and
blanks only are excluded.

REFERENCES

[1] S. Balandin and H. Waris, “Key properties in the development of smart
spaces,” in Proc. 5th Int’l Conf. Universal Access in Human-Computer
Interaction. Part II: Intelligent and Ubiquitous Interaction Environments
(UAHCI ’09). Springer-Verlag, 2009, pp. 3–12.

[2] D. G. Korzun, S. I. Balandin, V. Luukkala, P. Liuha, and A. V. Gurtov,
“Overview of Smart-M3 principles for application development,” in
Proc. Congress on Information Systems and Technologies (IS&IT’11),
Conf. Artificial Intelligence and Systems (AIS’11), vol. 4. Moscow:
Physmathlit, Sep. 2011, pp. 64–71.

[3] E. Ovaska, T. S. Cinotti, and A. Toninelli, “The design principles and
practices of interoperable smart spaces,” in Advanced Design Approaches
to Emerging Software Systems: Principles, Methodology and Tools,
X. Liu and Y. Li, Eds. IGI Global, 2012, pp. 18–47.

[4] A. Vdovenko, S. Marchenkov, and D. Korzun, “Mobile multi-service
smart room client: Initial study for multi-platform development,” in Proc.
13th Conf. of Open Innovations Association FRUCT and 2nd Seminar on
e-Tourism for Karelia and Oulu Region, S. Balandin and U. Trifonova,
Eds. SUAI, Apr. 2013, pp. 143–152.

[5] I. Galov and D. Korzun, “Smart room service set at Petrozavodsk
State University: Initial state,” in Proc. 12th Conf. of Open Innova-
tions Association FRUCT and Seminar on e-Tourism, S. Balandin and
A. Ovchinnikov, Eds. SUAI, Nov. 2012, pp. 239–240.

[6] D. Korzun, S. Balandin, and A. Gurtov, “Deployment of Smart Spaces
in Internet of Things: Overview of the design challenges,” in Proc. 13th
Int’l Conf. Next Generation Wired/Wireless Networking and 6th Conf.
on Internet of Things and Smart Spaces (NEW2AN/ruSMART 2013), ser.
LNCS 8121. Springer-Verlag, Aug. 2013, pp. 48–59.

[7] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, “Smart-M3 information
sharing platform,” in Proc. IEEE Symp. Computers and Communications
(ISCC’10). IEEE Computer Society, Jun. 2010, pp. 1041–1046.

[8] D. Korzun, A. Lomov, P. Vanag, J. Honkola, and S. Balandin, “Generat-
ing modest high-level ontology libraries for Smart-M3,” in Proc. 4th Int’l
Conf. Mobile Ubiquitous Computing, Systems, Services and Technologies
(UBICOMM 2010), Oct. 2010, pp. 103–109.


