
On Playing Encoded Media Adverts
Radio-like by Using Spring Web Services

Konstantin Novykov, Alexander Zakharchuk, Vladimir Sayenko
Kharkov National University of Radioelectronics (KhNURE)

Kharkiv, Ukraine
{nkonstantin.ru, sasha.delirious, visank} @gmail.com

Abstract

This thesis provides an overview of some architectural solutions for encoded audio/video
streamer (player) using Spring web services, JCE extention and client mobile platforms. It is
provided with some solutions on developing the web server that would provide the web services
for the streamer.

Index Terms: JAVA, Spring web services, JCE extention, Media player.

I. INTRODUCTION

Nowadays most of the commercial trading/service companies try to inform their
customers with the most recent activities as fast as possible. The most active users would
like to be informed either. It is clear, that media content, such as video or audio is much
more efficient in the way of advertising. The thing is that the media adverts are corporate
and should be stored and played safely via web, so both the User and the Corporation
would be sure in data safety and the in-time data updating.

Also, the trading corporation that uses such web service would easily choose the way it
would provide the media content. It could be radio-like, user request-like, or any other way
of content spreading, that is the most applicable for the marketing purposes.

The most attractive thing about usage of the web services, that most of the programming
languages have a pretty wide variety of supporting technologies and the client could
actually be of any type: mobile client, website integrated service, desktop application
(notifier), etc. In our case, we are most interested in creating the encoded media streaming
web service itself and a Java mobile application for this web service. To improve
accessibility we suggest using cloud services for this goal. The advantage of cloud
computing is the ability to virtualize and share resources among different applications with
the objective for better server utilization [1].

II. MAIN PART

The supported solutions are presented as a special application. The application contains
two separate modules: a server module and a mobile client.

The server module provides the streaming of encoded media files. Spring provides one
of the most applicable and flexible functionality for this [2]. The mobile client can request
the needed media advert streams by searching for the particular trading company or by
using the hash tag search.

__PROCEEDING OF THE 13TH CONFERENCE OF FRUCT ASSOCIATION

-- 206 --

The solution that is provided is following the three-layer MVC architecture. The
common schema of this architecture, used in the application, is provided below.

Fig.1. Common representation of the three-layer application architecture

The common algorithm is using the following schema. The media files (adverts) are
stored in the encoded state on the file system of the server. The server is providing a radio-
like advert streaming of audio and video files, so when the customer would like to listen to
or watch the actual media advert, he is sending a request to the web service that responds
with current media stream. While all of the files are stored in the encoded state, when the
streamer requests for the next file to play, the server decodes the file, creates a temporary
copy of it, which is then sent to the playing stream. As soon as the playing stops, the
temporary file (the decoded one) is getting deleted from the file system and the next file
proceeds the described procedure. This way the files are protected from being downloaded
and used in any wrong way and the file system of the server is still not being overloaded.

The client mobile application contains all of the advert radio-services that use this
application. Anytime he can see the description of what data is provided at the real time on
every server and choose what to watch/listen to. Considering the point that every user has
special needs, there is a hash tag search implemented for finding the needed media streams.
Each trader that is using the application has to provide a number of special tags that would
describe the information about their products or services as full as possible.

Considering the decode/encode process, it doesn’t require a lot of processor time or disk
space. JCE library that is used to implement those processes provides full functionality for
the described purposes with reasonable resource consumption.

Speaking of the temporary file listener, it works the following way. As soon as the
“radio” server starts, the listener is starting to monitor the folder which is set as the

__PROCEEDING OF THE 13TH CONFERENCE OF FRUCT ASSOCIATION

-- 207 --

temporary decoded files holder. The application configuration contains special variables
that are used during the runtime. One of them is the scan period that is used by the listener.
Depending on the scan period, listener is looping over the files that are in the temporary
folder and deletes the ones that are not in use (the input/output streams are closed), so the
result would be that files that are being read by the streamer or being decoded by the
decoder would remain untouched.

The diagram at the Fig. 2 represents some of the major classes used in the application.

Fig.2. Partial class diagram representation.

User class represents the actual actor-client user of the application. This class is
implementing the LoginHandler interface which is responsible of the authentication and
security token processing. User is requesting media streams from the
MediaStreamController that has special methods for each type of media, i.e. video and
audio. To form the requested streams by the HashTag, MediaStreamController is using the
implementation of StreamService (not shown on the diagram, because of the class/interface
viewing scope). This service provides the methods to get the decoded files, which are
decoded by the Decoder class. When Decoder creates a temporary decoded file from the
encoded one, this file is added to the list of temp files in the TempFileListener class, which
is listening to all of the Decoder actions. As soon as the stream is created and the file
output stream is closed, the TempFileListener deletes the file.

The diagram at the Fig. 3 represents the action sequence of the application user which is
using the current application.

First, the user has to login or signup and then login to the application. After receiving the
security token he is requesting for the needed media stream. After that media stream is
being formed from the decoded files, which are getting created temporary by the decoder.
As soon as the file gets idle or not used by any input\output stream it is getting deleted by
the temporary file listener.

__PROCEEDING OF THE 13TH CONFERENCE OF FRUCT ASSOCIATION

-- 208 --

Fig. 3 – Application sequence diagram.

III. CONCLUSION

By using the direct radio-like online advert player, the traders can provide clean
information to their customers without any not needed interruptions or third-party
information. This way the customers will receive the exact adverts they want and be up to
date with the most recent offers and changes only from the companies they want. This will
give the trader more chances to sell his products or provide service to the customers;
likewise the customers will receive only clean advert information they need. There is also a
big part left to improve the application, the following features could be added further:
advert proposal for the members of the application, automatic hash tag fixing, etc.

REFERENCES
[1] Borko Furht, Armando Escalante “Handbook of Cloud Computing” Springer Science + Business Media LLC,

p.p. 9-10, 2010.
[2] Craig Walls, Ryan Breifenbach “Spring in action” 2-nd. Ed., Manning Publications Co., pp.768, 2007.

__PROCEEDING OF THE 13TH CONFERENCE OF FRUCT ASSOCIATION

-- 209 --

