
Geo2Tag Performance Evaluation

 Mark Zaslavskiy, Kirill Krinkin

 FRUCT LETI Lab

Saint-Petersburg, Russia

{mark.zaslavskiy, kirill.krinkin}@gmail.com

Abstract

Today volume of the Internet traffic growths very fast. This trend affects Web-application, with
the number of users and amount of traffic also increasing their workload. That’s why developers

need to achieve maximum performance on existing hardware. Software optimization allows
solving this problem. Geo2Tag is an open source platform for location-based services (LBS),
which provide web interfaces for them. Initially, it was developed as an educational project which
goal was to give students experience in open source projects development. But now number of
supported functions and number of users (users of LBS and developers) for platform is increasing,
and in this situation platform performance is not enough. This paper describes Geo2Tag platform

performance evaluation and optimization.

Index Terms: Location-based services, Performance evaluation.

I. INTRODUCTION

Nowadays global Internet traffic is about a 44 EB and growing very fast [1]. This

huge number means increase of workload at web-services. And hardware update is not a

solution because main processor vendors are increasing number of physical cores instead

of increasing processor frequency. This fact limits achievable performance gain – it is

limited by Amdahl’s law [2] and depends from program structure and part of a sequential

computations. That’s why software optimization is required.

 Geo2Tag is an open source platform for Location Based Services (LBS). It was

started as educational project, which first goal was to give students experience of open

source software development. Now with much new functionality developed by students it

goes to non-educational usage as a complete product. In this case such systems

characteristics as reliability, performance and security take the first place. At the current

moment no studies about this aspects state for Geo2Tag where done. This paper is a first

step of Geo2Tag quality research and improvement, and it’s focused on platform

performance (by the term performance we will understand number of requests which

platform can process per second).

II. PERFORMANCE EVALUATION

A. Problem statement

Geo2Tag architecture was described in details at recent works [3-4]. From this papers

follow that platform performs two global functions - user REST requests processing and

synchronization of data between in-memory cache and DB. Goal is to achieve maximum

available performance for both functions, because they are executing at one server. So,

tasks of this work are:

 Investigate which REST requests are used most frequently.

 Measure the most frequent requests processing performance.

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

 Profile REST requests processing, determine bottlenecks.

 Profile DB synchronization mechanism, determine bottlenecks.

 Maximize performance for REST requests processing and DB

synchronization.

 Compare results before and after optimization.

B. Mathematical modeling of platform clients

For determining the most frequently used requests was performed mathematical

modeling of average client application. As client application was chosen Location client

[5], because its use cases are the most common among all existing clients [5-7]. As

formalism for modeling Markov chains theory were chosen, because it allow making

conclusions using small amount of information about modeling system.

Location client performs next requests: login, subscribeChannel, unsubscribeChannel,

subscribedChannels, loadTags, writeTag, applyChannel. They were chosen as a Markov

chain states (1-8). Situation when mobile client are shutting down represents absorbing

state [8]. Due to Location client structure – connections between different screens which

perform different requests – we can construct system transition matrix:

14 15 16 17 18

23 24 25 26 27 2822

33 34 35 36 37 3832

43 45 46 47 4842

54 55 56 5852

64 65 66 68

72 74 75 76 78

, ,

00 0

0

0

00
,

0 00

0 00 0

0 0 0

0 0 0 0 0 0 0 1

, 1,8 : 0 1, 1,8 :i j i j

P P P P P

P P P P P PP

P P P P P PP

P P P P PP
P

P P P PP

P P P P

P P P P P

i j P i P

 1,
j

where
,i jP is a probability to go at j state from i . Zeros in this matrix means that

client structure makes impossible to do j request after i request.

Numerical experiments where performed using MATLAB package. Their goal was to

determine average count of each request execution before the system goes to absorbing

state for different frequency of track sending and program shutdown. For calculations we

used next formula:

1

, , ,M M

ijT E Q T E Q

where M number of non-absorbing states, E identity matrix of order M , Q

submatrix of P containing all non-absorbing states, ijT average number of times

when system where in state j starting from state i before absorbing. As a result value

we take minimal average number of times when system was in state j depending on

initial state:

min .j ij
i

T T

For the modeling, non-zero probabilities of matrix P (probability of program

shutdown and sending WriteTag request) where defined in the next way:

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 186 --

6 6 8 8, ,

, 1..7.

i j writeTag i j exitP P P P P P

i j

They are defined as independent to the start state because such assumption makes model

simpler to calculate and is more realistic that opposite hypothesis – application can stop

work properly (sending requests to the server) during many factors, and most of them

don’t depend on the last send request. Setting
6iP is equal for all states, because this

request is performed periodically and this period does not depend from previous send

request too.

Other non-zero elements of P are selected using:

1
2 , 4,5 ,

2

1
, 2,3,7 ,

2

1..7,

writeTag exit

ij

writeTag exit

ij

P P
P j

k

P P
P j

k

i

where k – number of non-zero probabilities in j string of matrix P . These probabilities

are selected equal also for the simplicity – we have not enough statistics about user

behavior.

Experiment contains one simulation for fixed value of 0.05exitP and varying
writeTagP

from 0 to 0.95.

Results of modeling are represented below:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

P
writeTag

N
u

m
b

e
r

o
f
re

q
u

e
s
ts

writeTag

loadTags

login

subscribe

unsubscribe

subscribedChannels

addChannel

Fig. 1. Number of requests performed to the platform depending on track sending frequency (0.05exitP)

Fig.1 shows how minimal average number of requests is changing with changing

frequency of WriteTag request. On this graph can be seen that WriteTag is dominating

request for PwriteTag greater than 0.3 and LoadTags is dominating when PwriteTag is less

then 0.3.

C. Control program profiling

In this work profiling was used for determining is DB interaction bottleneck or not.

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 187 --

Because platform use write-through policy for cache writing request processing time

consists request handler code execution time and DB interaction time.

For collecting data about request processing time PerformanceCounter class was

implemented. This class measures execution time of a code part using gettimeofday(..)

system call: in object of PerformanceCounter constructor current time is measured, in

its destructor current time is measured again and difference between two times is the

execution time of profiled code part.

Gettimeofday(…) allow to achieve precision about 0.1 ms, and because all our

measurements where bigger than this value, we doesn’t use more accurate instruments.

As an experimental server Lenovo Thinkpad T420 with Ubuntu 11.10 was used. All

experiments where performed on clean system.

Next write requests to platform were profiled AddUser, AddChannel, DeleteUser,

RegisterUser, SubscribeChannel, WriteTag, UnsubscribeChannel; also time of DB

interaction was measured for each request. Each request was performed 40 times and

using profiling data average total and DB interaction time was calculated.

Fig. 2. Write requests profiling results

Fig.2 shows that for each write request profiling shows that DB interaction time is

about 99% of total request processing time and that’s why DB is a bottleneck. According

to this conclusion there are three paths for achieving better performance of requests

processing – usage of lazy cache write policy, DB structure optimization and usage of

faster DBMS.

D. Performed optimizations

In previous section the most frequent requests were found and discovered that DB

interaction is a bottleneck. In this section will be concrete optimizations that were added

to Geo2Tag LBS-platform.

1) DB structure optimization: Because WriteTag request is the most frequent write-

request, its speed affects whole system speed. WriteTag performance can be increased

by reducing its DB interaction. Before optimization request processing for correct data

contains following steps:

- Check of user credentials.

- Check of user permission to write into selected channel.

- Tag creation (SQL INSERT request into tag table).

- Tag and channel connection (SQL INSERT request into tags table).

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 188 --

- Tag is written into cache.

- REST response generation.

From the list above can be seen that WriteTag processing contains two SQL requests

into different tables. For WriteTag speedup next DB structure is proposed:

Fig. 3. DB structure optimization

On the Fig.3 DB structure transformation shown. Transformation includes remove of

tags table and creation additional attribute called channel_id in tag table; channel_id is

foreign key from channel table.

After such DB transformation WriteTag processing will need execution of only one

SQL request.

2) Thread-synchronization optimization: In the beginning of the article two main tasks

of platform where listed and the second one is a DB synchronization. This task is

performed periodically (period of synchronization - m_updateInterval) by platform in

separate thread and synchronization speed depends linear from DB objects count. That’s

why synchronization speed optimization can increase total speed of platform.

During WriteTag processing profiling anomaly was found. For more information

additional experiment was done. Big number of tags (12000) was added to platform

sequentially using WriteTag request. Processing time of each request was recorded and

below graphical representation of this experiment is presented:

Fig. 4. Dependency between WriteTag processing time and amount of tags in DB

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 189 --

Fig.4 shows anomaly in details – anomaly points are marked as red circles. WriteTag

processing time can be represented as sum of processes – nonperiodical and periodical

(circles). Because platform contains only one periodical process – DB synchronization –

with big probability it is a source of problem. Additional profiling shown that this

hypothesis was true and problem source is an ineffective usage of low level

synchronization primitives. Flowchart below shows problem code part and refactoring:

Fig. 5. Tags synchronization code flowchart: before (left) and after refactoring (right)

Refactoring showed on Fig.5. allows to remove anomaly by moving lock to moment

when it definitely needed.

Applied refactoring significantly reduced the time of DB synchronization and time of

potential cache blocking during this synchronization.

3) DB-synchronization optimization: After tags synchronization refactoring

possibilities of platform performance optimizations still exist. Because cache and DB are

not compared during synchronization situation when data, which are already in cache, are

still copied in cache and CPU is used ineffectively. Solution for this problem is a creation

an algorithm for synchronization decision-making.

For decision-making about synchronization cache and DB data comparison needed.

Byte comparison is effective but very expensive operation – it has linear dependency

from DB size. For the fast decision-making SQL transaction number recording is better

approach. Idea is to count each transaction, which platform executed, and compare this

number to DBMS statistics.

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 190 --

Solution architecture is next – platform creates separate thread, where decision-

making algorithm is executed periodically (time is set by user in milliseconds -

m_updateInterval). If decision-making algorithm returns true – synchronization is

performed, else thread sleeps for m_updateInterval until next check.

Fig. 6. Algorithm for decision making about DB synchronization.

Algorithm for decision-making works by comparing internal platform transaction

counter (m_transactionCount) with transactions count received from DBMS statistics

table (factTransactionCount). If difference between factTransactionCount and

m_transactionCount is more than user-defined value (TRANSACTION_DIFF) then

synchronization is required and value of actual transaction count should be assigned to

internal platform counter (this assignment allows to avoid useless synchronizations in

future); else synchronization is not needed (situation when internal counter is more than

actual value is possible because statistic collection in PostgreSQL works slow

sometimes).

By setting different values of TRANSACTION_DIFF and m_updateInterval

platform can achieve different ratios “performance/data consistency”. For example,

performance can be increased and sacrifice with data consistency by rare synchronization

(big value of m_updateInterval) or/and synchronization only when cache and DB has

big difference (big value of TRANSACTION_DIFF).

E. Effectiveness of optimizations

Performance testing of original and optimized system was performed for getting

numerical value of optimization effectiveness. For testing LoadTags and WriteTag were

choosen because they are the most frequently used requests.

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 191 --

For performance measurements simple Qt-based console application was written. Qt

was chosen because author is more familiar with QtThreads API than with other

multithread API. This application main goal is to perform many requests to locally

Geo2Tag instance and log requests results – request processing time and error code

(special code for successful request). We measure local instance performance because for

distributed instance request processing time will also contain random network delay

value. For time measurement we use the same instrument as in profiling section –

gettimeofday(…) system call.

1) LoadTags: For LoadTags performance testing following experiment was

performed:

- Number of tags (Ndb) in platform were increased sequentially from 0 to 54000

with step of 1000 tags using WriteTag requests.

- At every point of Ndb variable 10000 LoadTags requests were send

sequentially, time of each request processing was recorded.

By measurements results for each point of Ndb was recorded sampling distribution of

LoadTags processing time (TLoadTags). For each distribution average, variance, max and

min values were calculated. And this values dependency from Ndb was selected as a

representation of request processing performance before and after optimization.

0 1 2 3 4 5 6

x 10
4

-100

-50

0

50

100

150

200

250

300

350

400

m
a
x
(t

)-
m

a
x
(t

o
p
t),

m
s

N
db_Tags

Fig. 7. Difference between optimized and original system max LoadTags processing time

By comparing calculated dependencies at original and optimized systems was found

that for LoadTags requests processing max time decreased at optimized system;

comparison of other dependencies doesn’t give any univocal conclusion.

1) WriteTag: For checking optimization effect for WriteTag request following

experiment was performed on original and optimized systems. Number of tags in

platform was sequentially increased by 12000 using send of WriteTag request, until

required number of tags will not reached. During execution time and error flag (1 if error

exists, 0 if request was processed successful) of each request processing was recorded.

Possible reason of errors during WriteTag requests processing – ineffective

multithread synchronization which was reviewed at sections D.2-3. When platform

performs DB synchronization its internal data structures became locked and all requests

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 192 --

received in this moment have to wait until unlock. This waiting is probable source of

errors.

After the measurements were done both datasets was processed – average time,

variance time, max time, number of errors were calculated. Comparison of both systems

results are represented in table below:

TABLE I

COMPARISON BETWEN ORIGINAL AND OPTIMIZED SYSTEMS WRITETAG PROCESSING TIME DISTRIBUTION

Parameter
Original

system

Optimized

system

Average time, ms 72.8558 39.7050

Variance of time, ms2 11845.0000 16.3266

Max time, ms 2664.0000 255.0000

Number of errors 1426.0000 0.0000

Number of errors per added tag 0.1188 0.0000

This comparison in Table I shows growth of performance and reliability of WriteTag

processing after optimization – distribution parameters (average, variance, max)

decreased, number of errors became equal zero.

III. CONCLUSION

In this work performance evaluation and optimization for Geo2Tag platform was

performed. Math model of client application was created and the most frequent request

where founded. Also, request processing bottlenecks and problems with multithread

synchronization where found. Future plans contain next steps for further performance

improvement:

- Replacement of PostgreSQL by noSQL or GIS-oriented DBMS.

- Usage of lock-free algorithms and data structures.

- Usage of data structures for effective geodata storage.

ACKNOWLEDGMENT

The author would like to thank Finnish Russian University Cooperation in
Telecommunication Program for provided equipment and support.

REFERENCES

[1] J. Robertson (2012, May 30). Cisco Web-Traffic Forecast Points to Slowing Growth. Available:
http://go.bloomberg.com/tech-blog/2012-05-30-cisco-web-traffic-forecast-points-to-slowing-growth/ (URL)

[2] G. Amdahl, "Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities", AFIPS
Conference Proceedings (30), pp.483–48.

[3] I. Bezyazychnyy, K. Krinkin, M. Zaslavskiy, S. Balandin, Y. Koucheravy, “Geo2Tag Implementation for
MAEMO” in the 7th Conference of Open Innovations Framework Program FRUCT, Saint-Petersburg, Russia 26-

30 April 2010.
[4] V. Romanikhin, M. Zaslavsky “Spatial Filters For Geo2tag LBS Platform”, in the 11th Conference of Open

Innovations Association FRUCT, Saint-Petersburg, Russia 23-27 April 2012.

[5] R. Dorohova, S. Kassaye “ThereAndHere Project,” in the 11th Conference of Open Innovations Association

FRUCT. Saint-Petersburg, Russia 23-27 April 2012.
[6] I. Bezyazuchnyy, K.Krinkin “Geo2tag client: Doctor Search,” in the 11th Conference of Open Innovations

Association FRUCT, Saint-Petersburg, Russia 23-27 April 2012.
[8] J. G. Kemeny, J. L. Snell. Finite Markov chains. The University Series in Undergraduate Mathematics, Princeton:

Van Nostrand, 1960.

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 193 --

