
Distributed Service Environment (Smart

Spaces) Security Model Development

Kirill Yudenok, Kirill Krinkin
Saint-Petersburg Electrotechnical University

Russia, St.-Petersburg

{kirill.yudenok, kirill.krinkin}@gmail.com

Abstract

Access control mechanisms play a key role in many areas of computer science,

however, for the information provided on the basis of semantic web and established

solutions don’t exist. This work focuses on the research in this area, in particular to

ensure the information security in distributed service environments (smart spaces),

which are the most promising application of standards and technologies of semantic

web.

The main focus of this paper will be devoted to the analysis and investigation

solutions to develop security model and mechanisms for a smart space platform, as well

as its comprehensive testing. As a test platform was chosen Smart-M3 platform, which

has the highest degree of elaboration and maximum prospects for further applications.

Index Terms: Smart spaces, Smart-M3, HIP, Security, Access control.

I. INTRODUCTION

Modern trends in information and communication technology led to the need for a

stable and reliable infrastructure for storing and retrieving various kinds of information

from a wide range of actors in the information environment. This infrastructure is called

“smart space” (SS). Systems that implement the function of smart space, suggest the

presence of multiple devices using a common representation of the available resources

and services. Through the use of smart space can provide better support to the user that

provides the flexible usage and inclusion in the intellectual environment of the various

new devices as well as access to information and services from any device such

environment, regardless of their physical location. The main problem of intellectual

environment consistency devices is that the resources of the environment are shared

among different devices and retrieve information not necessarily performed from the

device on which it is stored [1].

More modern application platform of smart spaces take a common approach of shared

memory and increase interoperability through the use of ontologies, graphs based on the

data model of the semantic web. But in order to develop freely and maintain a controlled

situation, highly dynamic applications, shared memory infrastructure of smart space must

include access control mechanisms, at least, to provide exclusive access to the selected

part of the information that must be updated.

Access control of digital systems has been deeply studied since the emergence of

computer science at all levels of computer architectures abstraction. Definition and

provision of complete and common access control model that is optimized for data based

on graphs is a complex task that is beyond the scope of this paper [3].

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

The focus of this paper is focused on the research and analysis of the subject area, a

description of possible solutions for the creation of the security mechanisms and the

development the security model and mechanisms for the smart spaces Smart-M3

platform.

II. SMART SPACE SMART-M3 PLATFORM

A. Overview of smart space Smart-M3 platform

Smart-M3 is an open source software platform [2] that aims to provide Semantic Web

information sharing infrastructure between software entities and various types of devices.

The platform combines ideas of distributed, networked systems and Semantic Web [4].

The major application area for Smart-M3 is the development of smart spaces solutions,

where a number of devices can use a shared view of resources and services [5]. Smart

spaces can provide better user experience by allowing users to easily bring-in and take-

out various electronic devices and seamlessly access all user information in the multi-

device system from any of the devices.

The simplified version of the Smart-M3 smart spaces reference model is shown in

Fig. 1. The Knowledge Processors (KPs) represent different applications that use the

smart space. At figure KPs is shown as M3-agents. The smart space core is implemented

by one or several Semantic Information Brokers (SIBs) interconnected into the common

space. The information exchange is organized through transfer of information units

(represented by RDF triples, resources in the form of subject-predicate-object

expressions) from KPs to the smart space and back. The information submitted to the

smart space becomes available to all KPs participating in the smart space. The KPs can

also transfer references to the appropriate files/services into the smart space, since not all

information can be presented by RDF triples (e.g., a photo or a PowerPoint presentation).

As a result the information is not really transferred but shared between KPs by using

smart space as a common ground [4].

Fig. 1. Smart space based on Smart-M3: simplified reference model

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 173 --

B. Security problems of Smart-M3 platform

The current version of the Smart-M3 platform has some access control mechanisms

for information of the smart space, but at a lower level of abstraction [8]. Investigation of

these mechanisms is conducted in order to find an optimal and fastest way to control

access in restricted conditions (width of channel, the performance of the computing

device, etc.). The usage of proven technologies will avoid some of the difficulties and

realize the long-unsolved problem.

The main security problems of Smart-M3 platform are:

 Absence of identification and authentication mechanism of smart space client.

Clients connection without the identity confirmation to the smart space. Any

agent may always connect to the space, knowing only its connection settings.

 Absence of smart space users access control and authorization mechanism.

At this moment, every user has the same rights in all smart space, all operations,

such as insert, update, delete, query and subscribe are available on initial

connection.

 Absence of privacy, because all the information is stored in the public domain.

Based on the problems described above, we can conclude that the platform does not

have the basic security mechanisms, which are a major threat not only for the data stored

in the space, but also throughout as a whole platform.

III. SMART SPACE SECURITY MODEL, MECHANISMS AND ACCESS CONTROL

DEVELOPMENT

A. Smart space security model and mechanisms description

Domain and its characteristics analysis showed that the concept of smart spaces is a

new paradigm in software development, but security issues are relevant in this case,

which has led to the creation of standard security mechanisms in the new environment.

In the field of computer security there are basic models and methods for ensuring the

security of computer systems. Each system must meet the set of security requirements for

it works in any conditions of its life cycle.

Select the main smart space security mechanisms that necessary to be developed. To

access control to the smart space it is necessary to develop mechanisms for identifying

and authenticating SS clients that allow monitoring and preventing unauthorized access

to the SS.

To protect the integrity and data access should provide an authorization mechanism

for the smart space subjects to control access to SS data based on access rights assigned

to each subject.

Creation of security mechanisms lies entirely on the shoulders of the system designer,

but there are waste solutions that to be followed in the design of security computer

system.

At this stage various methods of security mechanisms in the SS area were analyzed

and investigated from standard security models to third-party solutions offered by

developers of security systems.

B. Identification and authentication of smart space subjects

For identification and authentication of SS clients, it was decided to use the HIP

protocol – Host Identification Protocol. This protocol presents some security methods,

such as authentication, encryption and privacy.

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 174 --

1) HIP: HIP (Host Identity Protocol) is a host identification technology for use in IP

networks such as the Internet, developed at the IETF since 1999 and reaching their first

stable version in 2007.

The Internet has grown tremendously over the past twenty years and become a part of

life for millions of people. The basic TCP/IP technology has served us very well.

However, important issues such as mobility of Internet hosts over separate IP networks

and simultaneous connections to several networks were not a part of the original Internet

design. Furthermore, when the Internet grew from a small university network up to a

global communication infrastructure, many security issues became apparent. The lack of

reliable host authentication has prevented deployment of existing IP mobility extensions.

Often, public Internet servers face Denial-of-Service (DoS) attacks that make the service

unavailable to other users. [10]

HIP is designed to solve the following issues:

 mobility of Internet hosts over separate IP networks and simultaneous

connections to several networks;

 reliable host identification and authentication;

 host mobility and multihoming;

 security and privacy over IPv4 and IPv6 networks.

HIP is developed to address these issues in an integrated approach that fits well within

the TCP/IP architecture.

HIP enhances the original Internet architecture by adding a name space used between

the IP layer and the transport protocols. This new name space consists of cryptographic

identifiers, thereby implementing the so-called identifier/locator split. In the new

architecture, the new identifiers are used in naming application level end-points

(sockets), replacing the prior identification role of IP addresses in applications, sockets,

TCP connections, and UDP-based send and receive system calls. IPv4 and IPv6

addresses are still used, but only as names for topological locations in the network. HIP

can be deployed such that no changes are needed in applications or routers. Almost all

pre-compiled legacy applications continue to work, without modifications, for

communicating with both HIP-enabled and non-HIP-enabled peer hosts. [8]

HIP assigns to host a unique address using the private key (HIT). This address is

permanent and does not change the host position in the space, when the network address

is the same. If the network uses the HIP protocol, all IP addresses are replaced by

cryptographic identifiers.

HIP protocol has built-in security mechanisms and connection privacy. Using the

private key can be authenticated the host on the server. The server must also be

configured to support HIP. For authentication, the server checks host HIT with private

key.

HIP authenticates and protects connection between two hosts. HIP authenticates host

and verifies the symmetric key between them for secure data transfer. The flow of data

between end hosts is encrypted by IPsec ESP with a symmetric key, sets by HIP

protocol. [9]

HIP architecture is shown at Fig. 2.

As a HIP implementations can be considered the following solutions:

 The OpenHIP implementation has been started by the Boeing Phantom Works

company in the USA. It is run on Linux, Windows and Mac OS. The

implementation is released with a GPL license. (http://www.openhip.org).

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 175 --

Fig. 2. HIP architecture

 The HIP on Linux (HIPL) implementation is developed by the Helsinki

Institute for Information Technology (HIIT) in Finland. HIPL runs on Linux,

and there is an ongoing project to port it to Symbian OS. For public use, the

implementation is released with the GPL license, but a less restrictive MIT

license is available on special request. (http://infrahip.hiit.fi).

 The HIP for inter.net implementation is developed by Ericsson NomadicLab,

located in Jorvas, Finland. The primary platform for HIP for inter.net is

FreeBSD, although the Linux variant is also available. Both IPv4 and IPv6

protocols are supported. The implementation has a special “Ericsson Finland

Public Source” license. (http://www.hip4inter.net/).

 Also, there is an open-source but outdated HIP implementation in Python

language by Andrew McGregor [10].

C. Authorization and access control of smart space subjects

Authorization mechanism and access control of smart space subjects can be

constructed using the following solutions: discretionary security model, SS RDF-graph

mapping as a virtual file system (VFS), named graphs, access control ontology [18, 19,

20] and some security extension for the SS database. SS RDF-graph mapping as a virtual

file system used in this work, as the main mechanism for authorization and access

control.

Mechanism of RDF-graph mapping to a virtual file system is very similar to the

discretionary security model because of the binding to the file system. Mapping model as

well as the discretionary model will have the access control list (access matrix) to

distinguish rights between the system subjects. This model can be easily extended to the

role. Can be concluded that the mapping model like a copy of the discretionary security

model with the addition of different data represent algorithms as entities of the file

system. Mapping RDF-data to the virtual file system bundle with its access control

mechanism pushes us a little from the principles of distributed systems, but it fits into the

framework of developing secure systems using established mechanisms [11].

A further step in the development of the RDF-graphs is named graphs, which have

their own security mechanisms. Ontology access control can also be used, but due to

continued access, performance of the entire system will be open to question.

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 176 --

Consider the mechanisms of a SS RDF-graph mapping as a virtual file system and

named graphs in more detail.

1) SS RDF-graph mapping as a virtual file system: Providing a SS access control and

authorization mechanism can be achieved by SS RDF-graph mapping as a virtual file

system, which has its own established mechanisms of access control. All information of

smart space is presented in a triple form in RDF-similarity graph, which is stored in the

SS database.

Consider that the smart space (a set of "SIB-DB") is a file system (directory structure),

which has a certain access rights "RWX":

 R - read a triple, extract its components (S, P, O).

 W - write (insert) the relation to the triple.

 X - a list of entities relationship.

Considering a smart space as a virtual file system, we assume that the RDF-graph will

be as a directories tree and conclude that the directory access operations are analogous to

RDF operations. For example, the "execution" right of file system in the RDF field can

be represented as "get a list of all objects (relations) of this directory" or "list the entity

relationships." Thus, projecting the operation (rights) of the file system to the RDF

operations, we have a new area to solve the problem of access control to the information

provided in the SS.

The implementation of RDF-graph mapping as a virtual file system can be realized

with the FUSE technology, which allows developing your own virtual file system

[12, 13].

2) Named graphs: A named graph is an RDF graph which is assigned a name in the form

of a URI. A named graph is an entity with two functions name and rdfgraph defined on it

which determines respectively its name, which is a URI and the RDF graph that it

encodes or represents. These functions assign a unique name and RDF graph to each

named graph. In this way, a named graph is a resource, identified by its name and so it

can be described in the usual open way using RDF. Named Graphs are backward

compatible with RDF. Named graphs can be used with any of the various levels of

semantic theories for RDF: simple, RDF, RDFS or data typed interpretations from, or

OWL Full interpretations from. There are languages to describe the named graphs

(TRIX, RDF / XML and TRIG) and query languages (RDFQ, TriQL, SparQL) to work

with them.

Named graph extends RDF-graph by adding new entities in the graph, such as "an

authority”, "a relationship of authorizing” and "warrant”. An authority is a ‘legal person’;

that is, any legal or social entities which can perform acts and undertake obligations. The

‘authorizing’ relationship holds between an authority or authorities and a Named Graph,

and means that the authority in some sense commits itself to the content expressed in the

graph. A warrant is a resource which records a particular propositional stance or intention

of an authority towards a graph.

These entities are responsible for graphs availability, digital subscription,

authorization attitude and trust policy. It also allows you to track all transactions

performed with the graph. Construction of a SS named graph by adding new entities

(warrant, authority) to the SS graph will use the techniques of trust and graphs

availability and their information [15, 16, 17].

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 177 --

IV. THE IMPLEMENTATION OF A SECURITY MODEL AND ACCESS CONTROL PROTOTYPE

BASED ON SS PLATFORM

This section discusses selected technologies, describes solutions and implementation

of the security mechanisms in a smart space, such as identification, authentication and

authorization.

A. The mechanism of identification and authentication based on HIP protocol

To add HIP support to the smart space Smart-M3 platform the following solution was

produced – to develop a special agent on the server side of Smart-M3 platform, whose

task is to identify and authenticate the SS clients. As well as the correct HIT-IP mapping

binding setup in the system for work a HIP protocol with Smart-M3 platform.

1) HIP-agent development: When a client (KP) connects to the smart space (SIB), the

connection is intercepted by HIP-agent, which identifies and authenticates the client

based on the HIP protocol. Client and server sides must be configured to work via HIP.

Client communicates with HIP-agent using the Standard Socket API. When

connected, the client sends the hash key on the basis of which is made a decision on the

identification and authentication of the smart space client. If the hash is valid, the agent

connects the client to the space (SIB). This solution is shown in Fig. 3.

SIB

KPAgent

Host 1 Host 2

i1

i2

HIP

Client

Fig. 3. HIP-agent for Smart-M3 platform

The process of the client connection to the space is shown in sequence diagram Fig. 4.

2) Setting the binding of HIT-IP mappings: To address this issue, there are several

solutions:

1. setup bindings locally at the host, e.g. hosts files or hipd configuration file;

2. implementation of own application-specific resolution system;

3. using the tools provided by HIPL;

4. using of experimental HIP libraries (libhipl extensions).

As the solution was chosen to use the configuration tools provided with HIPL, namely

tools like hipconf and hipdnsproxy.

hipconf is a user-level program that is designed to create new IDs and adding them to

the main database of host ID (HI), setting the necessary parameters, routes and obtain the

necessary information.

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 178 --

SIB HIP-agent Client

hash valid?

hash, SS, request

hash valid

hash, SS, response

Fig. 4. The process of client connection to the space

hipdnsproxy lets you configure DNS on the client machine. There are two scenarios to

set up bindings:

 forward DNS resolution (hostname HIT+IP) using the DNS proxy that

works with legacy applications;

 reverse DNS resolution (HIT IP).

The first option works with “vanilla bind”, that is, you can set up your own HI records

in DNS. The second option requires a bind patch and it is not really needed in all

scenarios. Configuration details HIP-IP bindings can be found in the official

documentation (chapter five) [9].

B. SS clients access control and authorization mechanism

1) SS RDF-graph mapping as a virtual file system: Currently, Smart-M3 platform

works as follows. On the server side is hosted semantic information broker (SIB) and the

smart space database. To work with the client side, exist a special SSAP protocol, which

is designed to exchange data between the parties.

All information of the smart space is stored in relational data storage, smart space

database. Smart space information is presented in the triple form. The totality of these

triples stored in a specially defined database tables of the Smart-M3 platform. All tables

of the smart space database can be found in SQL-script "createDB.sql" of piglet_m3

module of Smart-M3 platform.

As the database serves embedded lightweight relational database - SQLite. SQLite

stores the entire database (including definitions, tables, indexes, and data) in a single

standard file on the computer on which the platform is performed. SQLite library is

written in C and is a good API for working with the database [21].

After some research described in paragraph “Authorization and access control of

smart space subjects” it was decided to develop a virtual file system that mapping smart

space information that is stored in a database table to a certain directory structure for

subsequent operations on them.

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 179 --

The directory structure of the mapping file system is shown in Fig. 5.

SIBFS

objects

subjects

predicates

p1, p2, …, pn

p1, p2, …, pn

p1, p2, …, pn

s1, s2, …, sn

o1, o2, …, on

Fig. 5. File system directory structure

The directory structure has a structure that allows you to receive information in the

form of "subject (s), predicate (p), object (o)", vice versa and all predicates (relations).

For a more accurate setting of access rights to the smart space triples (information)

was designed updated directory structure, which is presented in Fig. 6.

Fig. 6. Updated file system directory structure

Any Linux file system provides standard attributes to control access to files,

directories and other entities of file system. Thus a file system provides the standard

access control mechanisms for the users of the system.

The place of graph mapping as part of the platform is shown in Fig. 7.

S
Q

L
it
e

SIB

(piglet)

SSAP

CLIENTS

S
Q

L
it
e

SIB

(piglet)

SSAP

SIB FS
User rights

managment

Fig. 7. The place of graph mapping as part of the platform

2) A smart space virtual file system creation: To develop a virtual file system was

used FUSE technology (fusekit). [14] FUSE allows you to develop a fully functional file

system, which has a simple library API, which can be used by non-privileged users and

provides a secure implementation.

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 180 --

Smart space RDF-graph can be mapped in a VFS from smart space RDF-data and by

SSAP protocol, because the exchange of data between the client and smart space is using

it. In this case, it was decided to make smart space RDF-graph mapping from smart space

RDF-data. After platform starting, entire smart space database will be stored, for

example, in the file "X" of the user's home directory.

After the installation and configuration FUSE, you can create your own virtual file

system.

General algorithm for the graph mapping process can be represented as follows:

1. Logic implementing to work with the smart space database:

 obtaining all objects, subjects, predicates and their values from the smart

space database;

 record the data in the memory or data structure.

This step is to create methods for working with the smart space data. Table

“triple” stores all smart space triples in the following form, s - the subject, p -

predicate, o - the object and src - triple information: TABLE triple (s INTEGER,

p INTEGER, o INTEGER, src INTEGER); Table “node”, in the str column store

their values in accordance with the field id, number of s, p, o from triple table.

You need to extract all triples values from the node table over the keys of the

triple table and store them in memory or data structure.

2. A virtual file system directory structure creation on the basis of the data.

FUSE (fusekit) allows you to create your own directory structure with files and

other FS entities, set the permissions and other characteristics. At this stage it is

necessary to create a virtual file system directory structure that is shown in Fig. 5.

After the graph mapping will gets a virtual file system with all smart space

information (triples), which also is the primary access rights managing mechanism of all

smart space clients.

Setting permissions on the directory structure of the VFS is a manual process. This

method has the disadvantage of the administration as well as the installation of the access

rights for each table or directory tables require careful control of the process.

To correct this deficiency it is planned to develop a special access rights managing

tool. The main objective of this tool to install the access modifiers (labels) on the file

system elements of the mapped graph (files, directories). This principle allows pointing

rights to each triplet, whole group of triplets or individual relationship of triplets.

3) Implementation of a mapping model to the Smart-M3 platform: The process of

implementing the mapping model to the Smart-M3 platform is as follows:

1. piglet module modification of the Smart-M3 platform:

2.1. piglet proxy creation for new extensions;

2.2. replacement of all database operations to the mapped file system

operations;

2.3. identification and verification of access rights of clients;

2. testing operations on the client side.

After the implementation of the smart space mapping mechanism to the platform

architecture, we can control the information access process for all of its clients.

Eventually it will completely abandon the smart space database and replace it with a

file access (virtual file access).

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 181 --

V. TESTING AND ANALYSIS OF A MODEL

A. Functional testing of a model

Testing of a designed security mechanisms held in a specifically deployed

environment. As main operating system used Ubuntu 10.04 with installed Smart-M3

platform, realization of HIP — HIPL and other components necessary for the

development.

1) HIP testing: To complete HIP work in the system, make sure that is the correct

mapping of IP addresses in the HIT. To do this, configure hipd configuration file at both

sides or use the utilities hipconf and hipdnsproxy. All the main mapping options listed in

the "Configuring Bindings HIT-IP mappings" chapter.

After setting up HIP protocol, the system will use a special cryptographic keys (HIT)

instead of IP addresses or jointly. To test the HIP in the systems you may try to ping

second HIP configured host or use the HIP-compatible software, such as Sendmail, VLC,

OpenVPN and others, but they also require a preset configuration [9].

HIP protocol setting on the client and server can communicate over a secure channel

with a preliminary identification and authentication of the connected host's over the HIT

key. It is completely transparent to the transport and application layers.

2) The SS RDF-graph mapping testing: During testing mapped file system, make sure

that the SS RDF-graph is correctly mapping in the virtual file system.

A common scenario of testing mapping graph:

 Smart space deployment, Smart-M3 platform launch, content of SS with data.

After platform starting will create a database of the SS, the file "X" in the

user's home directory. As the SS data can be a specific ontology or set of

triples.

 SS RDF-graph mapping in VFS mechanism launch: $./sibfs ~/sibfs.

The result of mechanism launch is that from SS RDF-data will form a

virtual file system to a predetermined directory structure (Fig. 5) and VFS will

be automatically mounted in the system, for example in the "sibfs" directory.

In future this VFS is used to set the access rights for a certain groups of triples

(directories and files of VFS).

B. Analysis of the mechanisms for compliance with the requirements. Detection of model

flaws and a description of their possible solutions

HIP protocol meets all the requirements for the creation of identification and an

authentication mechanism based on a special agent of the platform, but has some

difficulty in configuration, in provided API and is not supported by all operating systems

and has bugs in some of its components (hipdnsproxy).

SS RDF-graph mapping mechanism to a virtual file system also fulfills its

requirements, but not perfect, such as the difficulty in setting up and monitoring of access

rights for all users of the system, but can be solved by creating a special configuration

access rights utility.

It is planned to replace the authorization mechanism for implementation using named

graphs that will solve some problems of graph mapping.

VI. CONCLUSION

The research and development of the security model and mechanisms in distributed

service environments (smart spaces) achieved the following results:

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 182 --

 analyzed and designed the HIP protocol-based mechanism of identification

and authentication;

 the mechanism of authorization and access control SS subjects by mapping

RDF-graph on the file system is developed; mechanism tested in the Smart-M3

platform;

 the process of implementation mapping mechanism to the Smart-M3 platform

is started.

As a result of the project was examined the basic security and access control models,

researched and designed the main methods to develop their own security mechanisms in

smart spaces, designed and tested mechanism for SS RDF-graph mapping to the virtual

file system in the Smart-M3 platform.

VII. FUTURE WORK

The next step in the improvement of the security model and mechanism will be:

 implementation of mapping model to Smart-M3 platform;

 set permissions tool development for mapping FS;

 HIP-agent development;

 named graph authorization system development;

 adding developed mechanisms to new version of Smart-M3 platform

(Redland).

A working implementation of the security prototype mechanisms for the Smart-M3

platform to be developed for the 13th FRUCT conference.

Acknowledgment

Authors would like to thank FRUCT Smart Space Working Group (SS WG) for

providing feedback and guidance.

REFERENCES

[1] N.G. Shilov, A.M. Kashevnik, "Modern system of interaction of mobile devices in smart spaces: requirements

and technologies", UDK 004.8 (rus).

[2] Smart-M3 Open Source Project, http://sourceforge.net/projects/smart-m3

[3] A. D’Elia, J. Honkola, D. Manzaroli, T. Salmon Cinotti, "Access Control at Triple Level: Specification and

Enforcement of a Simple RDF Model to Support Concurrent Applications in Smart Environments", RuSmart,

August 2011.

[4] J. Honkola , H. Laine, R. Brown, O. Tyrkkö, "Smart-M3 Information Sharing Platform", 1st Workshop on

Semantic Interoperability in Smart Spaces, 2010.

[5] RDF Semantics, http://www.w3.org/TR/rdf-mt/

[6] J. Honkola, H. Laine, R. Brown, I. Oliver, "Cross-Domain Interoperability: A Case Study", Computer Science

LNCS, vol. 5764, pp. 22-31, 2009.

[7] B.A. Galatenko, "Categorization of information and information system. Provide a basic level of information

security", 2006. (http://citforum.ru/security/articles/categorizing/). (rus)

[8] P. Nikander, A. Gurtov, T. Henderson, "Host Identity Protocol (HIP): Connectivity, Mobility, Multi-homing,

Security, and Privacy over IPv4 and IPv6 networks", IEEE Communications Surveys and Tutorials, 12 (2), 2010.

[9] Official HIPL manual: http://infrahip.hiit.fi/hipl/manual/index.html

[10] A. Gurtov, Host Identity Protocol (HIP): Toward the Secure Mobile Internet. HIIT, Finland, 2008.

[11] P.N. Devyanin, "Mathematical foundations of computer security. The application", Institute of Cryptography,

Telecommunications and Computer Science, Moscow, Russia, November 2009. (rus)

[12] FUSE documentation: http://www.ibm.com/developerworks/ru/library/l-fuse/, http://fuse.sourceforge.net/

[13] FUSE sources: http://sourceforge.net/projects/fuse/files/fuse-2.X/

[14] Fusekit sources and documentation: http://code.google.com/p/fusekit/

[15] J.J.Carroll, C.Bizer, P.Hayes, P.Stickler, "Named graphs", 2005.

[16] J.J.Carroll, C.Bizer, P.Hayes, P.Stickler, "Named graphs, provenance and trust", 2005.

[17] T.Gibson, K.Schuchardt, E.Stephan, "Application of Named Graphs Towards Custom Provenance Views",

2009.

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 183 --

[18] P.A. Lomov, M. G. Shishaev, "Developing an ontology for semantic access control", The establishment of the

RAS Institute of Informatics and Mathematical Modeling Process Biological Institute, Russia, 2010. (rus)

[19] B. Andersen, F. Neuhaus, "An ontological approach to information access control and provenance", OIC, 2009.

[20] A. Mohammad, G. Kanaan, T. Khdour, S. Bani-Ahmad, "Ontology-Based Access Control Model for Semantic

Web Servives", JICS, p. 177-194. England, UK.

[21] SQLite documentation: http://www.sqlite.org/docs.html

__PROCEEDING OF THE 12TH CONFERENCE OF FRUCT ASSOCIATION

-- 184 --

