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Abstract 

The object of research is modern decentralized communication system, which can contain quite 
a large number of users. Actual problem in this area is the study of algorithms of dynamic 

scheduling of users access to the communication channel. In this work algorithm NAMA is 
considered and the results of the analysis of its main characteristics are given. 

 
Index Terms: Multiple access, Decentralized communication system, Dynamic time division 
access. 

I. INTRODUCTION 

Nowadays there are a lot of decentralized data communication systems that use time 

division multiple access. These systems may contain a large number of users, so a static 

time division access does not provide the required quality of service [1]. This paper 

presents an algorithm in which the resources are reserved by dynamic scheduling. 

II. MAIN PART 

Following [2], the system can be described with a following model. Suppose that the 

system contains V users. It is assumed that the user can directly communicate with users 

which are at a distance no greater than r  from him and indirectly – at a distance no 

greater than2r  from him.  

Model of decentralized system with a dynamic schedule can be represented as a graph 

= ( , )G V E , where V is set of users, E  is set channels between subscribers. If two users 

u  and v  located at a distance not more than r  from each other, there is a channel 

( , )u v E . In this case users u  and v  can communicate with each other. We call them 

one-hop neighbors. Denoted by 
1

iK - set of one-hop neighbors of user i . We call two 

users who don’t have a common edge, but have a common one-hop neighbor as two-hop 

neighbors. Thus the set  iKK
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  is one-hop and two-hop neighbors of user i. 

Example of a decentralized system model is shown in Fig. 1 (a). In this example, the 

neighbors of user i  are selected (number 1 means one-hop neighbors, number 2 – two-

hop neighbors).  

The system time is divided into the slots. All users transmit messages only at the 

beginning of the slot. Denote "collision" as event when two or more neighbor users 

transmit in one slot. 
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Fig. 1. Model of a decentralized system with dynamic scheduling 

To simplify the model we describe the system model as follows [2]. Consider two-

dimensional area of size =1S  (a square with side equal 1 and the coordinates of the 

lower left corner equal (0,0) ). In this system we will use a Poisson input stream, that is 

going to generate the number of users in the area by the Poisson law with intensity  










areaslot

sessionsnewofnumberthe
. Let us generate two coordinates for each user as 

uniformly distributed random numbers. System model with a dynamic schedule is shown 

in Fig. 1 (b). 

In papers [2, 3, 4] for the mentioned model of decentralized system time division 

algorithm was described, called Node Activation Multiple Access (NAMA). Using this 

algorithm in each slot only those users who are not neighbors will transmit. Therefore, 

this algorithm allows to transmit data without collision. The main indicator of system 

performance is the average number of transmitted packets by one user in one slot. The 

aim of this paper is to show the dependence of the main indicator on the radius r .  

Based on paper [2] and the previously described model, we present analysis of the 

main indicator of system performance and algorithm NAMA. We introduce the random 

variable – the number of one-hop neighbors of user i , and denote it as 1N . We calculate 

the expectation of 1N : ][ 11 NEn  . Introduce 
( )

( , ) =
!

k
SS

p k S e
k

 
 is the probability that 

there are k users in area. 

The average number of users in the area of size S  is S . 
Since one-hop neighbors are users at a distance no greater than r , then the average 

number of one-hop neighbors is 
2

1 =n r . 

We introduce the random variable 2N – the number of two-hop neighbors of user i and 

calculate the expectation of 2N : ][ 22 NEn  . In [2] the expectation of 2N  was obtained, 

but the detailed explanation was omitted. We consider calculation of 2n in details. Two-

hop neighbors are users who have a common neighbor, as shown in Fig. 2. In this figure, 

the users are two-hop neighbors, since they have a common neighbor C . To calculate the 

average number of two-hop neighbors we find the number of users that have common 

neighbors i  and j . We denote the distance between nodes i  and j  as ( , ) =d i j l r  

where [1,2]l . 
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Fig. 2. Two-hop neighbors 

 Area of the segment XAY :  
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 Area of the hatched region can be found as the sum of the areas of the two segments 

XAY . Let 

2

( ) = arccos 1
2 2 2

l l l
l

 
  

 
, Then area of the hatched region S  is:  

 ).(2=2= 2 lrSS segmentXAY   

Consequently, the average number of users in the hatched area  

 
2( ) = 2 ( ),B l r l   

( )1 B le  is probability of an event that, in the shaded area will be at least one user. 

Then the average number of users in the interval rl  , which have common neighbor with 

user i :  
2

( )

1

1 B ll r e dl  , since [1,2]l . Adding up all users covered by the ring ( ,2 )r r  

around the user i , get the average number of two-hop neighbors: 
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Thus the average number of one-hop and two-hop neighbors of user i is: 
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In paper [2] claims that the number of competitors is Poisson distributed variable with 

mean n . Following this statement, the probability of an event that randomly selected 
station will transmit in the slot: 

,
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e
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  

where n  is average number of competitors.  
For algorithm NAMA average number of competitors is the average number of 

neighbors, that is n . Therefore, average number of transmitted packets in the slot for 

algorithm NAMA: 

).(= nTqNAMA  
This is not correct, because distribution of 21 NN   is not Poisson. Note, that 1N  and 

2N  are Poisson distributed variables, but they are dependent, therefore 21 NN   is not 

Poisson distributed.  

Moreover in this paper dynamic scheduling algorithm has been simulated according to 

paper [2]. In the algorithm NAMA in each slot the number of competitors of user A  is 

calculated as the number of its neighbors 
AM . One user from the set 

AM A  is selected 

according to some rule. This user will transmit. L  slots were simulated to obtain an 

estimation of the capacity of the NAMA algorithm. And 
NAMA

q  was calculated as 

= A
NAMA

L
q

L
, where AL  is the number of slots where user A  transmitted. 

In Fig. 3 shows dependence of average number transmitted packets in the slot and 

range obtained by numerical methods [2], and simulation usage. 
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Fig. 3. The dependence of average number transmitted packets in the slot by one of the users on radius r 

III. CONCLUSION 

The obtained results show, that total number of neighbors is not Poisson distributed. 

Thus, the method described in [2] can be considered as approximation. The simulations 
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show, that real values differ from approximation by 10%. Thus, developing of new 

numerical analysis methods of decentralized systems with dynamic scheduling is still 

actual. 
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