
SmartSlog Knowledge Patterns:
Initial Experimental Performance Evaluation

Pavel Vanag, Dmitry Korzun
Department of Computer Science,

Petrozavodsk State University
Petrozavodsk, Russia

{vanag, dkorzun}@cs.karelia.ru

Abstract

The Smart-M3 platform allows prototyping and experimenting with various smart space applica-
tions. The performance problem of such applications and the level of automation in the development
process is, however, in its early phase. In this paper, we evaluate the knowledge pattern mechanism
that the SmartSlog SDK provides for Smart-M3 applications. On one hand, the mechanism allows
writing compact code to implement advanced search queries to the smart space. On the other hand,
high-level mechanisms are for the cost of performance; it can essentially degrade when the size
of search problem grows. Therefore, a tradeoff has to be determined. Our initial experimental
study considers a worst case model of the knowledge pattern mechanism and we provide empirical
performance upper bounds.

Index Terms: Smart-M3, SmartSlog, Knowledge patterns, Performance evaluation.

I. PROBLEM STATEMENT

Smart-M3 provides a multi-agent distributed application with a common smart space to
share dynamic knowledge and to make reasoning cooperatively [1]. A Smart-M3 semantic
information broker (SIB) maintains its smart space and represents the content in such low-
level terms as RDF triples. A Smart-M3 application consists of knowledge processors (KPs)
that share the application smart space. Since the same SIB can be used by several application,
the SIB supports several application smart spaces within its own space.

For development efficiency, KP code can be constructed on top of its ontology library,
which provides data structures and API to access the required part of the application smart
space. The code is written using such high-level OWL ontology terms as classes, properties,
and individuals [2], a convenient way when the problem domain allows ontological model-
ing. SmartSlog is an ontology multilingual library generator for Smart-M3 applications [3].
Among other useful features, it is oriented to tunable optimization of KP code size, system
dependencies, device CPU/memory consumption, network load, and data synchronization.

In our prior work [3] we introduced a mechanism for effective manipulation with smart
space content on the KP side: filtering locally available objects or searching-and-retrieving
objects from the smart space. The mechanism applies our knowledge pattern model. A
knowledge pattern is a graph (K-graph) where nodes represent virtual objects (individuals)
from the ontology. Nodes are augmented with datatype properties and linked by object
properties. It is similar to a downsized variant of the OWL ontology instance graph; the
latter represents the whole knowledge in the space. In a K-graph, nodes are not actual
individuals; instead, they are interpreted as masks or variables for actual individuals. The
developer specifies with a knowledge pattern only a part of properties for objects in the
ontology. In filtering, these selected properties are compared with properties of locally stored

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 176 --

individuals. In searching, these properties are used to retrieve specified individuals mapping
the K-graph to the ontology instance graph in the smart space.

Recently, knowledge pattern-based searching in the smart space is one of the compu-
tationally expensive operations that a SmartSlog ontology library implements. In this short
paper, we focus on performance evaluation of knowledge patterns. Unfortunately, no essential
knowledge processing can be delegated to SIB, since Smart-M3 v. 0.9.5 (or lower) has
support of WirbulQL (or WQL) with its simple queries only. Nevertheless, we expect that
in further releases SIB will include SPAQRL support [4], and then SmartSlog can delegate
more processing from the KP side to the SIB side.

II. K-GRAPH WORST-CASE MODEL

The knowledge pattern-based search is an iterative process. Each iteration makes data
queries to SIB for the next part of knowledge from the smart space. Also, each iteration
involves bidirectional online transformation between an RDF triple set (knowledge represen-
tation model at the SIB side) and an OWL instance graph (knowledge representation model
at the KP side with SmartSlog ontology library). Figure 1 depicts the basic steps and the
points of communication with SIB.

Start
searching

Pattern
to

triples

Query
to

SIB

Analyse result
(filtering individual list)

Triples
to

individuals

for each object propertyKP

SIB

Object properties
to

triples

Query
to

SIB

Triples
to

individuals

Delete
excess

individuals

data exchange local network

Fig. 1. Iterative steps of knowledge pattern-based search at the KP side.

Consequently, the performance essentially depends on the size of K-graph. Let us consider
the following size parameters.

1) swg is the number of datatype properties that every object has (graph weight).
2) swd is the number of object properties that every object has (graph width).
3) shg is the longest path from a fixed node to other nodes (graph height).
They characterize the class of K-graphs for our performance evaluation. The names “weight”,

“width”, and “height” support the intuition that a typical case for a K-graph is a tree, see
Fig. 2. The definition of swg and swd restricts the class with regular graphs: the same number
of edges per node. If a K-graph is a tree then the root is used as the fixed node in the
definition of shg.

Although a K-graph can be different from a regular tree, our K-graph model is an approxi-
mation for the worst-case scenario. Given a K-graph, to estimate a performance upper bound,

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 177 --

OWL Object

 datatype property
 ...
 datatype property

...

OWL
object

OWL
object

OWL
object

OWL
object...

...

OWL
object

OWL
object

OWL
object...

Fig. 2. A knowledge pattern forming a tree-like K-graph. In our experiments, we artificially generated only K-graphs from
this class of regular trees.

one can take the maximum over all the objects for the number of data and object properties
per node. If a K-graph is a set of trees then the performance upper bound estimation can be
straightforwardly reduced to a single tree case.

We expect that the case of K-graphs with cycles is uncommon in simple smart applications.
Such K-graphs appear in advanced scenarios with non-trivial knowledge deduction. We leave
this topic to our further research.

III. PERFORMANCE EVALUATION

For experimental evaluation, we implemented a special KP to generate knowledge patterns
for different size parameters and to make search queries to the smart space. The test content
(entire ontology instant graph) is published in the smart space in advance. In the worst case,
K-graph and the ontology instant graph coincide since the full search is performed.

Let Nind be the number of individuals in a generated graph. They are stored in the smart
space (the SIB side) using N triples. It requires Nrdf RDF triples to keep facts about each
individual and Nont RDF-scheme triples to keep the high-level ontology declarations, i.e.,

N = Nont +NindNrdf ,

where Nont is a constant for a fixed ontology. Every individual is represented using Nrdf =
1+swg+swd triples. Due to the well-known property on the number of nodes in a tree of height
shg ≥ 1 and degree swd ≥ 2, the total number of individuals is Nind = (s

shg
wd − 1)/(swd − 1).

Consequently, the smart space content size is characterized by the equation

N = Nont +
s
shg
wd − 1

swd − 1
(1 + swg + swd).

We measure the time T = T (swg, shg, swd) that a search query spends (in microseconds)
on average. The empirical dependencies are shown in Fig. 3. We vary swg, swd from 1 to 10
and shg from 1 to 5 because higher values for shg cause rapid growth of experiment time.

The experiment results show that the search performance can be described by a polynomial
model with high constant exponents or even by a exponential model. We assume the worse
case and consider the exponential dependence

T (swg, shg, swd) = b0 exp (b1swg + b2shg + b3swd) .

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 178 --

(a) (b)

(c)

Fig. 3. The measured dependency T (swg, swd, shg). (a) Variation of swd with fixed swh and shg. (b) Variation of swg

with fixed swd and shg. (c) Variation of shg with fixed swg and swd.

Applying multiple non-linear regression analysis [5] we determined the explanatory vari-
ables: b0 ≈ 11.582, b1 ≈ 0.034, b2 ≈ 5.538, b3 ≈ 0.388. More than 83% of the variance is
accounted by the statistical model.

Parameter b0 is a scaling coefficient. It depends on the power of machines where KP and
SIB are located as well as the network bandwidth between them. More importantly, the model
shows that the K-graph height, width and weight are arranged with separation in magnitude
of the one-degree order, i.e., the following performance-impact proportion can be used for
coarse-grain estimates:

shg : swd : swg ≈ 1 : 10 : 102.

The most significant factor is the height shg, see also Fig. 3 (c). As for a practical conclusion,
it is better to use more datatype properties than object properties a knowledge pattern. The
developer should carefully make decisions on use of those object properties that leads to
lengthy paths.

IV. RELATED WORK

The performance problem for Smart-M3 application and the level of automation in the
development process is in its early phase [2]. Works [6] and [7] considered the Smart-M3

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 179 --

performance, focusing primarily on the SIB side. In contrast, we studied the performance
available at the KP side and its relation to automated KP development.

D’Elia et al. [6] proposed an algorithm for SIB to provide basic access control functionality
at RDF triple pattern level. The insert operation performance is evaluated as a function of
active protections in SIB. The key finding is that the impact on SIB response time is small.
The algorithm was included to Smart-M3 from version 0.9.5.

Kantola [7] studied the problem of synchronizing data between a RESTfulWeb Service and
a smart space (SIB, Smart-M3 v. 0.9.2). The study indicated that the SIB performance could
become a problem even in case of a few simultaneous data updating agents.

V. CONCLUSION

Our early measurements showed the basic trends in performance upper bound when non-
trivial search is performed in the smart space and the search is controlled at the KP side.
They indicate that this type of search is possible from the performance point of view. Our
evaluation also provides coarse estimates for a developer to decide the size limit of knowledge
patterns for her/his KP code. We plan to continue this research applying other benchmarks
and models, with further focus on typical scenarios of real-life Smart-M3 applications.

ACKNOWLEDGMENT

This research is a part of grant KA179 “Complex development of regional cooperation in
the field of open ICT innovations” of Karelia ENPI programme, which is co-funded by the
European Union, the Russian Federation and the Republic of Finland. We are grateful to the
Open Innovations Association FRUCT for its support and R&D infrastructure. We would also
like to thank Sergey I. Balandin and Iurii A. Bogoiavlenskii for their feedback and expertise.

REFERENCES

[1] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, “Smart-M3 information sharing platform,” in Proc. IEEE Symp.
Computers and Communications, ser. ISCC ’10. IEEE Computer Society, Jun. 2010, pp. 1041–1046.

[2] D. G. Korzun, S. I. Balandin, V. Luukkala, P. Liuha, and A. V. Gurtov, “Overview of Smart-M3 principles for application
development,” in Proc. Congress on Information Systems and Technologies (IS&IT’11), Conf. Artificial Intelligence and
Systems (AIS’11), vol. 4. Moscow: Physmathlit, Sep. 2011, pp. 64–71.

[3] D. G. Korzun, A. A. Lomov, P. I. Vanag, J. Honkola, and S. I. Balandin, “Multilingual ontology library generator for
Smart-M3 information sharing platform,” International Journal on Advances in Intelligent Systems, vol. 4, no. 3&4,
2011.

[4] E. Prud’hommeaux and A. Seaborne, “SPARQL query language for RDF,” W3C Recommendation, Jan. 2008.
[Online]. Available: http://www.w3.org/TR/rdf-sparql-query/

[5] G. A. F. Seber and C. J. Wild, Nonlinear Regression, ser. Wiley Series in Probability and Statistics. John Wiley &
Sons, 1989.

[6] A. D’Elia, D. Manzaroli, J. Honkola, and T. S. Cinotti, “Access control at triple level: Specification and enforcement of a
simple RDF model to support concurrent applications in smart environments,” in Proc. 11th Int’l Conf. Next Generation
Wired/Wireless Networking (NEW2AN’11) and 4th Conf. Smart Spaces (ruSMART’11). Springer-Verlag, 2011.

[7] E. Kantola, “Synchronizing data between a social networking service and an RDF store via publish/subscribe,” Faculty
of Information and Natural Sciences, Aalto University, Helsinki, Finland, Master’s Thesis, Jun. 2010.

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 180 --

