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Abstract 

Programming of commodity multicore processors is a challenging task and it becomes even 

harder when the processor has an explicitly-managed memory hierarchy (EMMA). Software 

libraries in the field of matrix algebra try to keep pace with this challenge by using the dataflow 

model of computation and constructing tiled algorithms. A new approach to high-performance 

software library construction is proposed, which moves scheduling decisions to compile-time and 

is portable between different EMMA platforms. Performance and scalability analyses both 

demonstrate promising results. Experiments demonstrate near linear speedup on a synthetic 

multicore architecture, incorporating up to 16 working computational cores. Performance of a 

generated code is competitive with vendor BLAS implementations for the Cell processor. 

 

Index Terms: explicitly-managed memory hierarchy, adaptive library, BLAS. 

I. INTRODUCTION 

It is widely accepted that multicore programming is a hard problem. While creating a 

program we need to subdivide the whole task into subtasks, balance workload among 

cores, manage synchronization and manage complexity. There is a specific kind of 

architectures, which are even more complex to program than commodity chip-level 

multiprocessors (CMPs) – explicitly-managed memory architectures (EMMA) [1]. 

EMMA-architectures possess specific kind of problems, namely: each core has small-

sized scratchpad local memories, transfers between memories have to be managed 

explicitly (no transparent caches), no widely accepted programming model for all 

representatives exist. 

There are some packages exist for software libraries construction, such as Plasma [2], 

Cilk [3], SMPSs [4]. Some of them have been ported to the Cell processor [5]. However, 

the unified approach to software library construction for EMMA-architectures is still 

lacking. 

The packages considered are best suited for those programs which represent tiled 

algorithms [6]. Each tile is a continuous chunk of data representing the part of blocked 

matrix. Such algorithms are used in linear algebra software packages, such as LAPACK 

[7]. It should be mentioned that the core functionality of LAPACK and other linear 

algebra packages is incorporated into a BLAS library [8], which is a key to achieving 

high performance in these packages. 
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The rest of this paper is organized as follows: in section A we concentrate our 

attention on EMMA architectures and their distinguishing features. Section B is 

dedicated to the description of an approach presented in this paper. In section C synthetic 

processor model construction is described. Section D contains library subprogram 

workflow description. Analysis of modeling results is presented in section E. 

II. MAIN PART 

A. EMMA architectures 

EMMA architectures incorporate heterogeneous cores: one control core, several (up to 

8) computational accelerators and one or several transfer engines (TE) [5, 9, 10]. Each 

computational core has its private local store (LS) which is directly accessible via an 

instruction set. The local store is a small-sized scratchpad memory (not cache), that is 

why processing large data is a complex task, demanding for TEs involvement. Each TE 

should be programmed either by using specific instructions (e.g., for the Cell processor) 

or by using specific data structures, called “tasks”, residing in memory, describing 

transfers. Main bottleneck is slow channels between common store and local store 

memories.  

In architectures, which have more than one computational core there is a possibility of 

transferring data directly between local store memories of different computational cores. 

The aforementioned fact leads to the problem of distributing data transfers among 

channels so that the total time to solution be the smallest possible. TEs could work 

asynchronously with other components. Therefore, the maximum possible transfer hiding 

is of high demand. 

   

 

Fig. 1. The EMMA architecture flowchart 

Many EMMA architectures exist these days, namely: IBM Cell processor [5], TI 

OMAP [9], Atmel Dyopsys [10]. This paper describes a unified approach to solve the 

aforementioned problems automatically for tiled algorithms; examples of algorithms will 

be presented later. 

B. The approach description 

Existing software packages such as Cilk [3] or StarS [11] are ported to the Cell 

procesor and consider a processor as a symmetric multiprocessor with a specific 

management of inter-module transfers, thanks to the instruction set support and to the 

fact that each computational core has a dedicated TE. Such an approach lacks unification 
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for those architectures, which do not have dedicated TE for each computational core. 

Furthermore, dynamic nature of the resource allocation [3, 4] makes it less profitable for 

embedded systems, which demand high performance on data sets of smaller size. Main 

workflow of such packages is presented in Fig. 2. 

  
 

Fig. 2. Existing approaches’ workflow 

User has to write the program in terms of subtasks and point out which data chunks 

are input, output or changing in place [3]. After that a special compiler transforms this 

program into a new one, containing specific runtime library calls for managing pool of 

tasks, mapping tasks to computational cores, scheduling computations and managing 

synchronization. This approach leads to a significant runtime penalty for data sets below 

2K elements [12]. 

A new approach was proposed by the author [13]. This approach extracts mapping and 

scheduling tasks from the runtime and performs those steps at compile-time (see Fig. 3). 

  

 

 

Fig. 3. Proposed approach workflow 

The approach is based on a static macro-flow graph generation and resource 

allocation, using a processor description. At first, the programmer writes a Ruby-script, 

which incorporates information about how to construct an abstract macro-flow graph. 

Each script is specific for the type of generated programs. After that, the programmer has 

to write computational microkernels (not shown in fig. 2, 3). In case the runtime library 

is compatible with the processor model, on which the program is to run, and there is a 

processor description in question, the toolchain is ready to be used on this platform. 

An example of a macro-flow graph is presented in figure 4. Nodes of a macro-flow 

graph are called “actors”. All nodes have simple “firing rules” according to [14]. The 

bigger nodes correspond to computational microkernel calls, while the smaller ones 
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represent data transfers. While other researchers use a widespread representation with 

only “computational” nodes, the use of specific nodes for representing data transfers 

allows us to distribute data transfers in a more flexible fashion and estimate the memory 

footprint size for allocating TE tasks. 

 
 

Fig. 4. An example of a macro-flow graph 

The scheduling algorithm is composed of three stages: computation mapping and 

scheduling, transfer mapping and scheduling, memory allocation. Computation mapping 

and scheduling is itself a list scheduling algorithm, which uses a “greedy” ALAP [15] 

heuristic for mapping microkernel calls to computational cores. The list of corresponding 

actors is sorted using a criterion, which tries to move closer those actors, which “make 

heavy transfers”, and preserve the dependencies. Transfers are mapped to TEs according 

to their workload and the algorithm tries to “hide” transfer time “behind” computations. 

Transfer channels between local stores of different cores are used as much as possible. In 

case resulting data could be transferred through the local store, the corresponding actors 

are “marked” and TE tasks are not created. After computational actors have been mapped 

to computational cores the macro-flow graph is restructured. For each direct transfer 

there is a single actor and one TE task. For the transfer through the local store there is a 

single “marked” actor and no TE task. For each transfer through the common storage 

there are two actors and two corresponding TE tasks. The latter happens when the local 

store could not hold the result without overflowing memory. 

Explicit memory allocation stage prevents data corruption and local store overflow. 

Using a complete macro-flow graph, we could compute maximum storage requirements, 

allocate buffers and spread data chunks. A multi-buffering scheme is used for 

interleaving data transfers and data processing inside the local store.  While single buffer 

is used by the microkernel, others are used for exchanging data with other computational 

cores and the common storage. Temporary buffer is allocated inside the common storage 

in order to remove additional WaR and WaW dependencies and make scheduling 

decisions more flexible. 

C. Synthetic processor models 

The aforementioned approach has been implemented in a SAMPL [13] software 

package. By now, this package provides an ability to generate subprograms for a 

domestic “Multicore” family of processors, namely for the MC24, MC0226. All needed 

information about these processors is incorporated into the runtime library, the code 

generator (see Fig. 3) and the microkernels. Maximum number of computational cores 
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for the processors of this family is four. Porting the SAMPL package to the Cell 

processor, which has 8 computational cores, leads to substantial work. In order to 

perform a scalability analysis two synthetic processor models has been constructed. 

 For timing characteristics of microkernels to be the same, each processor model 

incorporates the same computational cores, as MC0226, having VLIW architecture and 

working with the same core frequency of 80 MHz. Main bottleneck of a considered 

architecture is a common store – local store transport channel. Each platform, 

incorporating a processor, may be characterized by the following ratio: 

,
peakp

k


  

where  is a throughput of the slowest channel between the common store and any of the 

local stores and ppeak is an aggregate peak performance of all computational cores. In case 

the Cell processor works at 3.2 GHz, the kcell is the smallest one among considered 

architectures and kcell ≈ 0.1342. Peak performance of a computational core in a 

“Multicore” processor is 160 MFlop/s (SIMD mode not considered). So, to synthesize a 

processor model having 8 and more computational cores we need to multiply the kcell by 

an aggregate peak performance of all computational cores. In case of taking the smallest 

k we make a conservative decision. The throughput of local store to local store channels 

in each synthetic processor model stays the same as in the MC0226 processor, namely 

199.3 MB/s. Each computational core has Harward memory architecture, the data 

memory is split onto two memory modules. Each data memory capacity is 64KB. The 

program memory has 16KB. The local store size imposes an upper bound on the tile size. 

By now only one TE is allowed, communication parallelism is not considered yet. 

D. A program workflow 

Each generated program works stage-by-stage, like in a BSP model [16]. Each stage 

has finishing barrier synchronization. During each stage there could be some 

computations and communication. Each computational core could perform only one 

microkernel call per stage. Program preemption during any of the stages is forbidden. 

Computations and communication may interleave because TEs work asynchronously and 

local memory is multi-buffered. Code loads to the local stores are performed during 

program execution. All the parameters needed for performing each microkernel call are 

packed into consecutive data chunks and transferred to the local stores right before each 

call. There are no computations during the first and the last stage. The first stage 

incorporates only code, parameter and data loads; the last stage only data is transferred 

back to the common store. 

Fig. 3 is simplified, because each stage incorporates TE tasks creation. Each TE has 

corresponding double-buffered area, one buffer is filled with new tasks, while the other 

one is used for fetching and processing previously created ones. TE task creation is a 

lightweight operation, because all the information about the transfer is computed at 

compile-time. So we only need to format this information so that any TE could 

interpret it. 

E. Simulation results 

In order to perform a scalability analysis two synthetic processor models have been 

used. They’ve been called MC0826 and MC1626; the first two digits denote the number 

__________________________________________PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 130 ----------------------------------------------------------------------------



of computational cores. The rules used for construction of these models were presented 

in section C. 

Two BLAS subprograms were taken in a consideration: sgemm and strsm [8]. The 

first subprogram is a good candidate for parallelization; because the structure of data 

dependencies between subtasks is relatively simple (each tile of a resulting matrix is a 

result of a simple chain of linearly connected invocations of the same operation). The 

strsm subprogram has a more interesting structure of dependencies. The macro-flow 

graph for computing single tiled column of a resulting matrix is presented in fig. 4. In 

general case there are several tiled columns and thus – several weakly-connected 

components (WCC)[17] in a macro-flow graph. 

 

Fig. 5. Scalability of the sgemm and strsm BLAS programs 

The first experiment series was performed using the MC1626 processor model. Both 

programs were running on data sets, having N tiles in each dimension. The number of 

computational cores (cc) varied from 1 to 16. Simulation results are presented in Fig. 5.  

As can be seen, sgemm scales well, but its speedup oscillates. Oscillation reduces 

when N value increases. The oscillation takes place because of the computational 

workload imbalance. When N increases, the number of WCC increases also and the total 

makespan becomes bigger. That’s why the influence of an aforementioned factor reduces 

with an increase of a data set size. The strsm program behaves differently. When the data 

set becomes bigger, the speedup increases and the curve moves closer to a linear 

speedup. Such a behavior stems from the following consideration: when the data set size 

increases, the WCC-related computational parallelism level increases also (see Fig. 4), so 

it’s more simple for the scheduling algorithm to load the computational cores. 

The second series of experiments was performed using strsm program only on the 

MC0826. The choice of a processor model having less number of cores made simulation 

time and results processing time much shorter. Program performance is presented in 

Fig. 6. 

As can be seen, at the maximum number of tiles (N = 16), performance of the program 

approaches sgemm microkernel performance. The tile size (NB) was chosen equal to 38 

elements. 
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Fig. 6. Performance of the strsm BLAS program 

The number of cores was 8 and stood the same in each of the experiments. Performance 

downfalls are caused by the fact that each scheduling step involves several weakly-

connected components to be scheduled. In these experiments the number of components 

(wccs) was equal to 6 thus the points of downfalls are the points where one additional 

WCC is scheduled. A decrease in falling takes place when the data set size increases. 

 

Fig. 7. Computational core utilization 

 

Fig. 8. Heatmap of a schedule for the strsm BLAS program 

Fig. 7 demonstrates an estimation of how much time do the computational cores 

perform the microkernel calls. It can be seen that at least one core is working almost all 
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the time. The same downfalls take place and an increase in a data set size makes more 

computational cores spend more time for performing microkernel calls. In fig. 8 a 

fragment of a schedule is presented as a heatmap. Each box is a computational stage for a 

single core or TE. Light colour corresponds to a high workload and a dark one – to the 

lowest. Bottom line corresponds to a single TE. It should be noted that the fragments 

shown in Fig. 8 are the only ones, where not all the computational cores do the 

computations. 

An analysis of overheads (see Fig. 9) shows that for big data sets the only overheads 

are synchronization and TE tasks creation. This convinces us that there is a very small 

fraction of time when all the computational cores stand idle. Synchronization is a 

relatively cheap operation and TE tasks creation and information transfers interleave with 

computations. Transport subsystem utilization is presented in Fig. 10. There are the same 

downfalls as in Fig. 6, 7 and 9.  Considering the conservative assumption about transport 

subsystem described in section C, we could claim that the time to perform transfers 

between different memories is fully interleaved with computations. This makes the 

aggressive optimization of the microkernels a promising step for further enhancement of 

program performance. 

 

Fig. 9. Level of overheads 

An existing BLAS implementation on the Cell processor was previously reported by 

IBM. The numbers presented in [12] and the experimental results allow us to affirm the 

following: 

• Performance of the IBM implementation of sgemm is less than 80% of peak 

aggregate performance of all the SPE cores [5] for the task size of 2048 elements and is 

less than 50% - for the task size of 1024 elements. The implementation, described in this 

paper, is faster on more than 25% than IBM sgemm on a 1K elements dataset and 

outperforms it even when a dataset is 2K elements. The data set size for the described 

implementation is only 336 elements (N = 8, NB = 42). 
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• Performance of the IBM implementation of strsm is less than performance of 

sgemm, so it is less than 50% for the task size of 1024 elements. The implementation, 

described in this paper, is faster on more than 25% than IBM strsm on a 1K elements 

dataset. The data set size for the described implementation is only 608 elements (N = 16, 

NB = 38). 

• An aggressive optimization of the microkernels could provide superior performance 

on larger datasets. 

  

Fig. 10. Transport subsystem utilization 

III. CONCLUSION 

This paper has demonstrated a new approach to the construction of an adaptive library 

for EMMA architectures. The approach is based on an automatic macro-flow graph 

synthesis, followed by a static resource allocation and a source code generation and was 

implemented as the SAMPL package. At the time of writing this article the SAMPL 

package included four BLAS programs and worked on two platforms, namely: MC24, 

MC0226. 

The scalability analysis of two BLAS subprograms was provided. The analysis 

showed near linear speedup of both subprograms on the synthetic EMMA architecture 

with up to 16 computational cores performing computations. The subprogram 

implementations outperformed IBM BLAS subprograms, working on a Cell processor on 

smaller data sets. An aggressive optimization of the computational microkernels is a 

promising direction of further work. 
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