
Adaptive Libraries for Multicore

Architectures with Explicitly-Managed

Memory Hierarchies

Konstantin Nedovodeev
Institute for High-Performance Computer and Network Technologies,

State University of Aerospace Instrumentation
1

Saint-Petersburg, Russia

parallelgeek@gmail.com

Abstract

Programming of commodity multicore processors is a challenging task and it becomes even

harder when the processor has an explicitly-managed memory hierarchy (EMMA). Software

libraries in the field of matrix algebra try to keep pace with this challenge by using the dataflow

model of computation and constructing tiled algorithms. A new approach to high-performance

software library construction is proposed, which moves scheduling decisions to compile-time and

is portable between different EMMA platforms. Performance and scalability analyses both

demonstrate promising results. Experiments demonstrate near linear speedup on a synthetic

multicore architecture, incorporating up to 16 working computational cores. Performance of a

generated code is competitive with vendor BLAS implementations for the Cell processor.

Index Terms: explicitly-managed memory hierarchy, adaptive library, BLAS.

I. INTRODUCTION

It is widely accepted that multicore programming is a hard problem. While creating a

program we need to subdivide the whole task into subtasks, balance workload among

cores, manage synchronization and manage complexity. There is a specific kind of

architectures, which are even more complex to program than commodity chip-level

multiprocessors (CMPs) – explicitly-managed memory architectures (EMMA) [1].

EMMA-architectures possess specific kind of problems, namely: each core has small-

sized scratchpad local memories, transfers between memories have to be managed

explicitly (no transparent caches), no widely accepted programming model for all

representatives exist.

There are some packages exist for software libraries construction, such as Plasma [2],

Cilk [3], SMPSs [4]. Some of them have been ported to the Cell processor [5]. However,

the unified approach to software library construction for EMMA-architectures is still

lacking.

The packages considered are best suited for those programs which represent tiled

algorithms [6]. Each tile is a continuous chunk of data representing the part of blocked

matrix. Such algorithms are used in linear algebra software packages, such as LAPACK

[7]. It should be mentioned that the core functionality of LAPACK and other linear

algebra packages is incorporated into a BLAS library [8], which is a key to achieving

high performance in these packages.

With the financial support of the Ministry of Education and Science of the Russian Federation

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 126 --

The rest of this paper is organized as follows: in section A we concentrate our

attention on EMMA architectures and their distinguishing features. Section B is

dedicated to the description of an approach presented in this paper. In section C synthetic

processor model construction is described. Section D contains library subprogram

workflow description. Analysis of modeling results is presented in section E.

II. MAIN PART

A. EMMA architectures

EMMA architectures incorporate heterogeneous cores: one control core, several (up to

8) computational accelerators and one or several transfer engines (TE) [5, 9, 10]. Each

computational core has its private local store (LS) which is directly accessible via an

instruction set. The local store is a small-sized scratchpad memory (not cache), that is

why processing large data is a complex task, demanding for TEs involvement. Each TE

should be programmed either by using specific instructions (e.g., for the Cell processor)

or by using specific data structures, called “tasks”, residing in memory, describing

transfers. Main bottleneck is slow channels between common store and local store

memories.

In architectures, which have more than one computational core there is a possibility of

transferring data directly between local store memories of different computational cores.

The aforementioned fact leads to the problem of distributing data transfers among

channels so that the total time to solution be the smallest possible. TEs could work

asynchronously with other components. Therefore, the maximum possible transfer hiding

is of high demand.

Fig. 1. The EMMA architecture flowchart

Many EMMA architectures exist these days, namely: IBM Cell processor [5], TI

OMAP [9], Atmel Dyopsys [10]. This paper describes a unified approach to solve the

aforementioned problems automatically for tiled algorithms; examples of algorithms will

be presented later.

B. The approach description

Existing software packages such as Cilk [3] or StarS [11] are ported to the Cell

procesor and consider a processor as a symmetric multiprocessor with a specific

management of inter-module transfers, thanks to the instruction set support and to the

fact that each computational core has a dedicated TE. Such an approach lacks unification

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 127 --

for those architectures, which do not have dedicated TE for each computational core.

Furthermore, dynamic nature of the resource allocation [3, 4] makes it less profitable for

embedded systems, which demand high performance on data sets of smaller size. Main

workflow of such packages is presented in Fig. 2.

Fig. 2. Existing approaches’ workflow

User has to write the program in terms of subtasks and point out which data chunks

are input, output or changing in place [3]. After that a special compiler transforms this

program into a new one, containing specific runtime library calls for managing pool of

tasks, mapping tasks to computational cores, scheduling computations and managing

synchronization. This approach leads to a significant runtime penalty for data sets below

2K elements [12].

A new approach was proposed by the author [13]. This approach extracts mapping and

scheduling tasks from the runtime and performs those steps at compile-time (see Fig. 3).

Fig. 3. Proposed approach workflow

The approach is based on a static macro-flow graph generation and resource

allocation, using a processor description. At first, the programmer writes a Ruby-script,

which incorporates information about how to construct an abstract macro-flow graph.

Each script is specific for the type of generated programs. After that, the programmer has

to write computational microkernels (not shown in fig. 2, 3). In case the runtime library

is compatible with the processor model, on which the program is to run, and there is a

processor description in question, the toolchain is ready to be used on this platform.

An example of a macro-flow graph is presented in figure 4. Nodes of a macro-flow

graph are called “actors”. All nodes have simple “firing rules” according to [14]. The

bigger nodes correspond to computational microkernel calls, while the smaller ones

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 128 --

represent data transfers. While other researchers use a widespread representation with

only “computational” nodes, the use of specific nodes for representing data transfers

allows us to distribute data transfers in a more flexible fashion and estimate the memory

footprint size for allocating TE tasks.

Fig. 4. An example of a macro-flow graph

The scheduling algorithm is composed of three stages: computation mapping and

scheduling, transfer mapping and scheduling, memory allocation. Computation mapping

and scheduling is itself a list scheduling algorithm, which uses a “greedy” ALAP [15]

heuristic for mapping microkernel calls to computational cores. The list of corresponding

actors is sorted using a criterion, which tries to move closer those actors, which “make

heavy transfers”, and preserve the dependencies. Transfers are mapped to TEs according

to their workload and the algorithm tries to “hide” transfer time “behind” computations.

Transfer channels between local stores of different cores are used as much as possible. In

case resulting data could be transferred through the local store, the corresponding actors

are “marked” and TE tasks are not created. After computational actors have been mapped

to computational cores the macro-flow graph is restructured. For each direct transfer

there is a single actor and one TE task. For the transfer through the local store there is a

single “marked” actor and no TE task. For each transfer through the common storage

there are two actors and two corresponding TE tasks. The latter happens when the local

store could not hold the result without overflowing memory.

Explicit memory allocation stage prevents data corruption and local store overflow.

Using a complete macro-flow graph, we could compute maximum storage requirements,

allocate buffers and spread data chunks. A multi-buffering scheme is used for

interleaving data transfers and data processing inside the local store. While single buffer

is used by the microkernel, others are used for exchanging data with other computational

cores and the common storage. Temporary buffer is allocated inside the common storage

in order to remove additional WaR and WaW dependencies and make scheduling

decisions more flexible.

C. Synthetic processor models

The aforementioned approach has been implemented in a SAMPL [13] software

package. By now, this package provides an ability to generate subprograms for a

domestic “Multicore” family of processors, namely for the MC24, MC0226. All needed

information about these processors is incorporated into the runtime library, the code

generator (see Fig. 3) and the microkernels. Maximum number of computational cores

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 129 --

for the processors of this family is four. Porting the SAMPL package to the Cell

processor, which has 8 computational cores, leads to substantial work. In order to

perform a scalability analysis two synthetic processor models has been constructed.

 For timing characteristics of microkernels to be the same, each processor model

incorporates the same computational cores, as MC0226, having VLIW architecture and

working with the same core frequency of 80 MHz. Main bottleneck of a considered

architecture is a common store – local store transport channel. Each platform,

incorporating a processor, may be characterized by the following ratio:

,
peakp

k

where is a throughput of the slowest channel between the common store and any of the

local stores and ppeak is an aggregate peak performance of all computational cores. In case

the Cell processor works at 3.2 GHz, the kcell is the smallest one among considered

architectures and kcell ≈ 0.1342. Peak performance of a computational core in a

“Multicore” processor is 160 MFlop/s (SIMD mode not considered). So, to synthesize a

processor model having 8 and more computational cores we need to multiply the kcell by

an aggregate peak performance of all computational cores. In case of taking the smallest

k we make a conservative decision. The throughput of local store to local store channels

in each synthetic processor model stays the same as in the MC0226 processor, namely

199.3 MB/s. Each computational core has Harward memory architecture, the data

memory is split onto two memory modules. Each data memory capacity is 64KB. The

program memory has 16KB. The local store size imposes an upper bound on the tile size.

By now only one TE is allowed, communication parallelism is not considered yet.

D. A program workflow

Each generated program works stage-by-stage, like in a BSP model [16]. Each stage

has finishing barrier synchronization. During each stage there could be some

computations and communication. Each computational core could perform only one

microkernel call per stage. Program preemption during any of the stages is forbidden.

Computations and communication may interleave because TEs work asynchronously and

local memory is multi-buffered. Code loads to the local stores are performed during

program execution. All the parameters needed for performing each microkernel call are

packed into consecutive data chunks and transferred to the local stores right before each

call. There are no computations during the first and the last stage. The first stage

incorporates only code, parameter and data loads; the last stage only data is transferred

back to the common store.

Fig. 3 is simplified, because each stage incorporates TE tasks creation. Each TE has

corresponding double-buffered area, one buffer is filled with new tasks, while the other

one is used for fetching and processing previously created ones. TE task creation is a

lightweight operation, because all the information about the transfer is computed at

compile-time. So we only need to format this information so that any TE could

interpret it.

E. Simulation results

In order to perform a scalability analysis two synthetic processor models have been

used. They’ve been called MC0826 and MC1626; the first two digits denote the number

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 130 --

of computational cores. The rules used for construction of these models were presented

in section C.

Two BLAS subprograms were taken in a consideration: sgemm and strsm [8]. The

first subprogram is a good candidate for parallelization; because the structure of data

dependencies between subtasks is relatively simple (each tile of a resulting matrix is a

result of a simple chain of linearly connected invocations of the same operation). The

strsm subprogram has a more interesting structure of dependencies. The macro-flow

graph for computing single tiled column of a resulting matrix is presented in fig. 4. In

general case there are several tiled columns and thus – several weakly-connected

components (WCC)[17] in a macro-flow graph.

Fig. 5. Scalability of the sgemm and strsm BLAS programs

The first experiment series was performed using the MC1626 processor model. Both

programs were running on data sets, having N tiles in each dimension. The number of

computational cores (cc) varied from 1 to 16. Simulation results are presented in Fig. 5.

As can be seen, sgemm scales well, but its speedup oscillates. Oscillation reduces

when N value increases. The oscillation takes place because of the computational

workload imbalance. When N increases, the number of WCC increases also and the total

makespan becomes bigger. That’s why the influence of an aforementioned factor reduces

with an increase of a data set size. The strsm program behaves differently. When the data

set becomes bigger, the speedup increases and the curve moves closer to a linear

speedup. Such a behavior stems from the following consideration: when the data set size

increases, the WCC-related computational parallelism level increases also (see Fig. 4), so

it’s more simple for the scheduling algorithm to load the computational cores.

The second series of experiments was performed using strsm program only on the

MC0826. The choice of a processor model having less number of cores made simulation

time and results processing time much shorter. Program performance is presented in

Fig. 6.

As can be seen, at the maximum number of tiles (N = 16), performance of the program

approaches sgemm microkernel performance. The tile size (NB) was chosen equal to 38

elements.

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 131 --

Fig. 6. Performance of the strsm BLAS program

The number of cores was 8 and stood the same in each of the experiments. Performance

downfalls are caused by the fact that each scheduling step involves several weakly-

connected components to be scheduled. In these experiments the number of components

(wccs) was equal to 6 thus the points of downfalls are the points where one additional

WCC is scheduled. A decrease in falling takes place when the data set size increases.

Fig. 7. Computational core utilization

Fig. 8. Heatmap of a schedule for the strsm BLAS program

Fig. 7 demonstrates an estimation of how much time do the computational cores

perform the microkernel calls. It can be seen that at least one core is working almost all

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 132 --

the time. The same downfalls take place and an increase in a data set size makes more

computational cores spend more time for performing microkernel calls. In fig. 8 a

fragment of a schedule is presented as a heatmap. Each box is a computational stage for a

single core or TE. Light colour corresponds to a high workload and a dark one – to the

lowest. Bottom line corresponds to a single TE. It should be noted that the fragments

shown in Fig. 8 are the only ones, where not all the computational cores do the

computations.

An analysis of overheads (see Fig. 9) shows that for big data sets the only overheads

are synchronization and TE tasks creation. This convinces us that there is a very small

fraction of time when all the computational cores stand idle. Synchronization is a

relatively cheap operation and TE tasks creation and information transfers interleave with

computations. Transport subsystem utilization is presented in Fig. 10. There are the same

downfalls as in Fig. 6, 7 and 9. Considering the conservative assumption about transport

subsystem described in section C, we could claim that the time to perform transfers

between different memories is fully interleaved with computations. This makes the

aggressive optimization of the microkernels a promising step for further enhancement of

program performance.

Fig. 9. Level of overheads

An existing BLAS implementation on the Cell processor was previously reported by

IBM. The numbers presented in [12] and the experimental results allow us to affirm the

following:

• Performance of the IBM implementation of sgemm is less than 80% of peak

aggregate performance of all the SPE cores [5] for the task size of 2048 elements and is

less than 50% - for the task size of 1024 elements. The implementation, described in this

paper, is faster on more than 25% than IBM sgemm on a 1K elements dataset and

outperforms it even when a dataset is 2K elements. The data set size for the described

implementation is only 336 elements (N = 8, NB = 42).

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 133 --

• Performance of the IBM implementation of strsm is less than performance of

sgemm, so it is less than 50% for the task size of 1024 elements. The implementation,

described in this paper, is faster on more than 25% than IBM strsm on a 1K elements

dataset. The data set size for the described implementation is only 608 elements (N = 16,

NB = 38).

• An aggressive optimization of the microkernels could provide superior performance

on larger datasets.

Fig. 10. Transport subsystem utilization

III. CONCLUSION

This paper has demonstrated a new approach to the construction of an adaptive library

for EMMA architectures. The approach is based on an automatic macro-flow graph

synthesis, followed by a static resource allocation and a source code generation and was

implemented as the SAMPL package. At the time of writing this article the SAMPL

package included four BLAS programs and worked on two platforms, namely: MC24,

MC0226.

The scalability analysis of two BLAS subprograms was provided. The analysis

showed near linear speedup of both subprograms on the synthetic EMMA architecture

with up to 16 computational cores performing computations. The subprogram

implementations outperformed IBM BLAS subprograms, working on a Cell processor on

smaller data sets. An aggressive optimization of the computational microkernels is a

promising direction of further work.

REFERENCES

[1] S. Schneider, et al., “Programming Multiprocessors with Explicitly Managed Memory Hierarchies,” Computer,

vol. 42, no. 12, pp. 28-34, Dec. 2009.

[2] E. Agullo et al., PLASMA Users’ Guide. Parallel Linear Algebra Software for Multicore Architectures

[Online]. Available: http://icl.cs.utk.edu.

[3] R. D. Blumofe, et al., “Cilk: An Efficient Multithreaded Runtime System,” J. Parallel and Distrib. Computing,

vol. 37, issue 1, pp. 55-69, Aug. 1996.

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 134 --

[4] J. M. Perez, et al., “A flexible and portable programming model for SMP and multi-cores,” Barcelona

Supercomputing Center, Barselona, Technical report 03/2007, 2007.

[5] J. A. Kahle, et al., “Introduction to the Cell multiprocessor,” IBM J. of Research and Development, vol. 49, no.

4/5, pp. 589 604, July 2005.

[6] Buttari, et al., “A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures,” J. Parallel

Comp., vol. 35, issue 1, pp. 38 53, Jan. 2009.

[7] E. Anderson, et al., LAPACK Users' Guide. SIAM, 1999.

[8] J. Dongarra, “Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard,” J. High Performance

Computing Applications, vol. 16, no. 11, doi: 10.1177/10943420020160010101.

[9] OMAP5910 Dual-core processor. Data manual, Texas Instruments, Dallas, TX, 2004.

[10] AT572D940HF. Preliminary Summary, Atmel, San Jose, CA, 2007.

[11] P. Bellens, et al., “CellSs: a Programming Model for the Cell BE Architecture,” in Proc. of the 2006

ACM/IEEE Conf. on Supercomputing, Tampa, FL, doi: 10.1145/1188455.1188546, Nov. 2006.

[12] V. Saxena, et al., “Optimization of BLAS on the cell processor,” in Proc. 15th Int. Conf. High Performance

computing (HiPC'08), Bangalore, India, pp. 18-29.

[13] K. V. Nedovodeev, “Self-adapting software as a means of meeting the multicore challenge,” in Proc. 7th

FRUCT, Saint-Petersburg, Russia, 2010, pp. 83 86.

[14] J. B. Dennis and D. P. Misunas, “A preliminary architecture for a basic data-flow processor,” in Proc. 2nd

Annual Symp. on Comput. Architecture, Houston, TX, 1974, pp. 126-132.

[15] O. Sinnen, Task scheduling for parallel systems. Wiley, 2007.

[16] Leslie G. Valiant, “A bridging model for parallel computation,” Commun. ACM, vol. 33, issue 8, pp. 103 111,

Aug. 1990.

[17] N. Christofides, Graph Theory. - an Algorithmic Approach. Academic Press, 1975.

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 135 --

