
St.-Petersburg and Moscow Metro Map for
Mobile Devices With Touch Screen

Nikita Karpinsky, Evgeny Linsky, Alexander Malakhov
State University of Aerospace Instrumentation

Saint-Petersburg, Russia
nikita.karpinsky@gmail.com,

{evlinsky, admalakhov}@vu.spb.ru

Abstract

This article is devoted to interactive metro map application which calculates the way between
two chosen stations. It describes structure of the program and input data format so that users can
add their own maps for different cities. Main emphasis is on implementing map for dragging and
zooming it quickly.

I. INTRODUCTION

This application implements interactive metro map and is called Underground. It provides
an opportunity to get travel time and the shortest way between two chosen stations.

It is developed in Qt for Symbianˆ1 and MeeGo. By the time development began there
was:

• no such an application for MeeGo at all;
• one application in Java which was too slow for Symbianˆ1 (Yandex.Metro).
Initial requirements for the app are:
• MeeGo and Symbianˆ1 support.
• Fast calculating travel time and the shortest way between stations with an opportunity

to switch similar routes.
• Dragging and zooming implementation.
• Pinch-to-zoom for MeeGo support.
• GPS for finding the closest station support.
• Storing maps in XML files for opportunity to add new maps.
• UI is designed in Qt-Quick and program logic is in C++.

II. IMPLEMENTATION DETAILS

A. Choosing technologies
Qt was chosen because it allows to implement UI once for both Maemo and Symbian.

Program logic is written in C++ and UI is in Qt-Quick to make development faster. XML
was chosen because it is self-describing. It allows users to add new maps on their own.

B. Program structure
1) Program logic part: All program logic is in C++. Main class for logic is Model class.

There is one Model for each map. First of all, constructor of Model calls parseXMLdata
function which is implemented in xmlParser class to get all input data. Besides providing
functions to get input data, Model also provides functions such as:

0With the financial support of the Ministry of Education and Science of the Russion Federation

__________________________________________PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 47 ----------------------------------------------------------------------------



Fig. 1. Route on the map Fig. 2. Choosing station Fig. 3. Stations list from the route

• getClickedStation which gets clicked screen coordinates and returns clicked station if
there is one with such coordinates;

• getRoute which gets two stations, then returns a route between them.
To switch models there is ModelChooser class which implements all the Model functions.

If a ModelChooser function is called then it is redirected to current map Model.
2) UI part: All UI is in QML except map implementation which is in C++. There is

Main.qml file which contains all the biggest parts of UI:
• Two buttons for opening station lists in the top part of the screen where stations can be

chosen (UpFields.qml).
• Slider for zooming map (Slider.qml).
• Map which can be dragged and zoomed (Map is implemented in MainWidget class).
• Route list which consists of stations in calculated route (RouteList.qml).
There are some states for Main.qml:
• ”mainWin”

Map without route is shown;
• ”stationList1” and ”stationList2”

List for chosing first or last station is opened;
• ”routeList”

There is a calculated route and stations list from this route is opened;
• routeMap

There is a calculated route. Map is transparent except the stations and edges which are
used in this route.

3) Connections between Model and UI part: All connections between Model and UI part
are implemented in JavaScript. Data for Stations and Edges is stored in QVariantLists of
QVariantMaps so that it can be read in both C++ and JavaScript.

__________________________________________PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 48 ----------------------------------------------------------------------------



C. Functionality description
In the Fig. 1 state is ”routeMap”.
In the Fig. 2 state is ”mainWin”. Dialog for chosing station is shown. User can choose

whether the clicked station is first or last in the route.
In the Fig. 3 state is ”routeList”. Times for each station are absolute.

D. Implementing Map
The biggest problem of the development was how to make dragging and zooming work

fast for Symbianˆ1. There were some ideas which appeared to work bad.
1) Map is a single image

There is a map image which is loaded in QML using Image element and is contained
in Flickable. When map is scaled the image is zoomed.
The biggest disadvantage of this method is that dragging is very slow because of the
way Qt-Quick stores an image. If map is scaled, default image is taken and zoomed
every time it should be repainted while dragging.
Here is simplified code:
1 F l i c k a b l e {
2 i d : f l i c k a b l e
3 f u n c t i o n r e c o u n t ( ) {
4 map . h e i g h t = main . h e i g h t ∗ s l i d e r . v a l u e
5 map . wid th = main . wid th ∗ s l i d e r . v a l u e
6 }
7
8 Image {
9 i d : map

10 s o u r c e : ” I c o n s / spb . svg ”
11 }
12 }

2) There are some different-sized images
To get rid of lack of the previous method image size is constant so dragging becomes
fast. To provide scaling there are several different-sized map images which replace each
other according to current scale value.
The disadvantage of this method is that it takes a lot of memory because images are
not unloaded properly in Qt-Quick while replacing each other. We tried a lot of ways
to solve this problem such as using Loader elements, a lot of different combinations of
using Image elements but it wasn`t fixed. Also scaling becomes discrete and it looks
awful for pinch-to-zoom.
Here is simplified code:
1 F l i c k a b l e {
2 i d : f l i c k a b l e
3 f u n c t i o n r e c o u n t ( ) {
4 map . s o u r c e =” I c o n s / spb ” + s l i d e r . v a l u e + ” . svg ”
5 }
6
7 Image {
8 i d : map
9 s o u r c e : ” I c o n s / spb0 . svg ”

10 }
11 }

3) Visible part of the map is drawn in C++
As all attempts to implement map using only Qt-Quick collapsed map is rendered
using C++. Map is a vector image which is described in XML-file and is drawn by
QPainter draw functions. Only elements which are shown on the screen are drawn.

__________________________________________PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 49 ----------------------------------------------------------------------------



As the result we get QDeclarativeItem which is loaded in QML instead of images in
previous methods.
Dragging works very slow because of big amount of lines, stations circles, station names
(the most slowly part), etc. which should be drawn while dragging. (For Moscow it is
185 station circles and names and about 250 lines between stations)
Here is simplified code:
1 void p a i n t ( Q P a i n t e r ∗ p a i n t e r , c o n s t Q S t y l e O p t i o n G r a p h i c s I t e m ∗ o p t i o n , QWidget

∗w id ge t )
2 {
3 QRectF c u r R e c t = bound ingRec t ( ) ;
4
5 f o r ( i n t i = 0 ; i < a l l E d g e s . c o u n t ( ) ; ++ i ) {
6 QVariantMap map = a l l E d g e s . a t ( i ) . toMap ( ) ;
7 i f ( c u r R e c t . c o n t a i n s ( map [ ” x1 ” ] ∗ s c a l e , map [ ” y1 ” ] ∗ s c a l e ) | |

c u r R e c t . c o n t a i n s ( map [ ” x2 ” ] ∗ s c a l e , map [ ” y2 ” ] ∗ s c a l e ) ) {
8 QPen pen ( QColor ( map [ ” c o l o r ” ] ) , penWidth ∗ s c a l e , Qt : : S o l i d L i n e ,

Qt : : RoundCap , Qt : : RoundJoin ) ;
9 p a i n t e r −>s e t P e n ( pen ) ;

10 p a i n t e r −>drawLine ( map [ ” x1 ” ] ∗ s c a l e , map [ ” y1 ” ] ∗ s c a l e , map [ ” x2 ” ] ∗
s c a l e , map [ ” y2 ” ] ∗ s c a l e ) ;

11 }
12 }
13 f o r ( i n t i = 0 ; i < a l l S t a t i o n s . c o u n t ( ) ; ++ i ) {
14 QVariantMap map = a l l S t a t i o n s . a t ( i ) . toMap ( ) ;
15 i f ( c u r R e c t . c o n t a i n s ( map [ ” x C e n t e r ” ] ∗ s c a l e , ( map [ ” y C e n t e r ” ] ∗ s c a l e ) ) {
16 p a i n t e r −>s e t B r u s h ( QColor ( map [ ” s t a t i o n C o l o r ” ] ) ) ;
17 p a i n t e r −>d r a w E l l i p s e ( map [ ” x C e n t e r ” ] ∗ s c a l e , map [ ” y C e n t e r ” ] ∗ s c a l e ,

c i r l c e S i z e ∗ s c a l e , c i r l c e S i z e ∗ s c a l e ) ;
18 }
19 }
20 }

4) Map is drawn in C++ once for each scale
Map is a QPixmap which is created every time map is scaled. Creating QPixmap is a
function which is similar to paint function from above. There is only one difference:
we should draw all the map, not only it’s visible part (createPixmap function). When
map is dragged, a fragment of this pixmap is copied using the QPainter of the paint
function.
To provide fast rendering while scaling there is a pixmap copy (smallPixmap). While
scaling, smallPixmap is being zoomed so that it is quite fast although the quality isn’t
high (createFastScaledPixmap function). It allows to solve our problem and dragging,
zooming and pinch-to-zooming work fine.
The paint function is so fast that we can consider that rendering time of the map depends
only on QML rendering, not on C++ part.
Here is simplified code:
1 void c r e a t e P i x m a p ( )
2 {
3 pixmap = new QPixmap ( wid th ∗ s c a l e , h e i g h t ∗ s c a l e ) ;
4 Q P a i n t e r ∗ p a i n t e r = new Q P a i n t e r ( pixmap ) ;
5
6 f o r ( i n t i = 0 ; i < a l l E d g e s . c o u n t ( ) ; ++ i ) {
7 QVariantMap map = a l l E d g e s . a t ( i ) . toMap ( ) ;
8 QPen pen ( QColor ( map [ ” c o l o r ” ] ) , penWidth ∗ s c a l e , Qt : : S o l i d L i n e ,

Qt : : RoundCap , Qt : : RoundJoin ) ;
9 p a i n t e r −>s e t P e n ( pen ) ;

10 p a i n t e r −>drawLine ( map [ ” x1 ” ] ∗ s c a l e , map [ ” y1 ” ] ∗ s c a l e , map [ ” x2 ” ] ∗
s c a l e , map [ ” y2 ” ] ∗ s c a l e ) ;

11 }
12 f o r ( i n t i = 0 ; i < a l l S t a t i o n s . c o u n t ( ) ; ++ i ) {
13 QVariantMap map = a l l S t a t i o n s . a t ( i ) . toMap ( ) ;
14 p a i n t e r −>s e t B r u s h ( QColor ( map [ ” s t a t i o n C o l o r ” ] ) ) ;

__________________________________________PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 50 ----------------------------------------------------------------------------



15 p a i n t e r −>d r a w E l l i p s e ( map [ ” x C e n t e r ” ] ∗ s c a l e , map [ ” y C e n t e r ” ] ∗ s c a l e ,
c i r l c e S i z e ∗ s c a l e , c i r l c e S i z e ∗ s c a l e ) ;

16 }
17 }
18 void MainWidget : : c r e a t e F a s t S c a l e d P i x m a p ( ) {
19
20 pixmap = new QPixmap ( wid th ∗ s c a l e , h e i g h t ∗ s c a l e ) ;
21 Q P a i n t e r ∗ p a i n t e r = new Q P a i n t e r ( pixmap ) ;
22 Q P a i n t e r : : PixmapFragment f r a g m e n t ;
23 / / S e t t i n g p a r a m e t e r s t o t h e f r a g m e n t i s s k i p p e d
24 p a i n t e r −>drawPixmapFragments (& f ragment , 1 , ∗ smal lPixmap , Q P a i n t e r : : OpaqueHint ) ;
25 u p d a t e ( ) ;
26 }
27 void MainWidget : : p a i n t ( Q P a i n t e r ∗ p a i n t e r , c o n s t Q S t y l e O p t i o n G r a p h i c s I t e m ∗ o p t i o n ,

QWidget ∗wid ge t )
28 {
29 QRectF c u r R e c t = bound ingRec t ( ) ;
30 p a i n t e r −>drawPixmap ( cu rRec t , ∗pixmap , c u r R e c t ) ;
31 }

5) Using Qt SVG
This is an attempt to improve createPixmap function.
First of all, an SVG-image was created using createPixmap from above where QPixmap
is replaced with QSvgGenerator. Then if there is no route on the map only SVG is
shown. If there is a route it is drawn over this SVG.
However it appeared that it works several times more slowly than previous method.

6) QGraphicsScene and QGraphicsView
We didn’t use QGraphicsView and QGraphicsScene because initial requirements were
to use Qt-Quick for all visible parts of the app and to use C++ for program logic.
After we realized that vector graphic was the only way for implementing we didn’t
use QGraphicsView because it meant that we had to change all the program structure
(Instead of having main class in Qt-Quick we should have used QGraphicsScene to
load interface and create new main class to control the map).
Rendering times
All the times were obtained using QML profiler and time.h functions for C++ on PC
and Moscow map was used (times for QML are very inaccurate).
(X + Y) ms means rendering time in QML + rendering time in C++.

TABLE I
RENDERING TIMES

Method Dragging Scaling
Map is a single image (10 + 0)ms (10 + 0)ms

There are some different-sized images (4 + 0)ms (6 + 0)ms
Visible part of the map is drawn in C++ (3 + 20)ms (3 + 20)ms

Map is drawn in C++ once for each scale (3 + 0.5)ms (3 + 60)ms
Using Qt SVG (3 + 0.5)ms (3 + 230)ms

E. Platforms features
As the app was developed in Qt and Qt-Quick all the version differences for Symbian
and MeeGo are because of sreen size and MeeGo supporting pinch-to-zoom. Some
QML files are different for not changing code for compiling. There are different main
files (Main S60.qml and Main MeeGo.qml) and different Flickables which hold the
map (MapFlickable MeeGo.qml and MapFlickable S60.qml)

__________________________________________PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 51 ----------------------------------------------------------------------------



III. CONCLUSION

In this article interactive metro map was described. It appeared that for this application
custom-made engine works faster than Qt and Qt-Quick engines.
This open source application is called Underground and can be found here
https://projects.developer.nokia.com/icthub/browser#underground.

__________________________________________PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 52 ----------------------------------------------------------------------------




