
Code-generator of Parallel Assembly Code

for Digital Signal Processor

Nikita Bukharenko, Alexey Syschikov
State University of Aerospace Instrumentation

1

Saint-Petersburg, Russia

massarakh@gmail.com, alexey.syschikov@guap.ru

Abstract

This paper presents some approaches to the creation of a code generator parallel assembly for

digital signal processors (DSP). Generator simplifies the creation of heavy programming constructs

and provides parallel execution of DSP-core software through the use of pipeline and parallel

constructions.

Index Terms: code-generator, digital signal processor, parallel code.

I. INTRODUCTION

Digital signal processors are actively applied in modern computing systems. Such

systems are used in control systems, processing audio, images, and video. They are

widely spread in communication devices and many other areas. For providing a high

performance such processors have DSP-cores, which have specialized architecture that

provides high performance in limited number of resource-intensive tasks. DSP-core can

have several parallel ALU, extended tables and dimensions of registers, a set of memory

subsystems, SIMD-extensions etc.
Programming languages such as C/C++ are mainly used for writing and debugging

programs for modern processors instead of native assemblers. All written code is

translated from the C/C++ languages to a low-level core assembler. Standard languages

are oriented on traditional architectures, that’s why compilers can’t generate code with

optimal efficiency using all possibilities of DSP architectures. To gain a well-optimized

code it is necessary to write a code directly on the low-level assembly language. It’s a

very laborious process and to simplify a task of writing a program, it’s possible to use a

code-generator oriented on a certain processor. Using initially a parallel and structured

programming language with a specialized assembler code-generator is possible to gain

more efficient code than from translated applications written in C/C++. The task of

generation efficient assembly code which actively uses parallelism and other features of

DSP-kernel is the purpose of this work.

Usage of parallel assembly generator gives optimized, parallel, high-performance

code without a necessity of manual parallelizing assembly code.

II. SOLUTION OF THE PROBLEM

A. Overview

The code generation from high-level representation plays an important role in the

computer science. It’s difficult to imagine a programming environment without a visual

With the financial support of the Ministry of Education and Science of the Russian Federation

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 27 --

editor, when you move objects on the form and generator writes a code with the desired

characteristics in the correct location.

Writing web-based applications, creating software with GUI for desktop computers,

developing applications for mobile phones is extremely difficult without graphic editors

that make a routine job of generating code.

A low-level assembly code is generated by all compilers, but they work with

traditional text-based languages like C/C++. At the same time, a development of

solutions in the field of digital signal processing tasks is at the turn of a work of

mathematicians, engineers and programmers. Traditional text languages don’t fit well for

a design and specification of algorithms. Provision of a high level language, preferably

visual, to developers, which on the one hand allows designing the algorithm visually, and

on the other hand generating an effective low-level code, will allow solving these

problems in a natural way, without translating them in an uncomfortable text language.
Among the successes of systems that implement the visual programming approach,

it’s necessary to note systems such as Simulink, LabView and SCADE. Simulink is

based on the Matlab execution environment and performs schemes within the Matlab

package, programs written in LabView run in its own standalone and portable runtime

environment and only SCADE provides full code generation, but only to the C language.
Among these examples it can be seen that the code generation is not new, in fact, this

is the main way to automate the process of obtaining native core code. As it is seen from

the examples above, there are no tools, combining the possibility of a high-level

programming and generating effective low-level code for specific architectures of DSP-

cores. The solution of this task is presented in this paper.

B. Solution of the problem

Most of signal processors have similar architectures, which mean that the developed

approach can be applied to a wide class of signal processors. In this paper as an

experimental platform we chose the microprocessor MC-24 [1] with a 32-bit central

processing unit with RISC-architecture and the high performance co-processor for digital

signal processing (DSP). DSP-core supports data processing with fixed and floating

point, provides information processing with a variable data format from bit formats to

standard data formats with floating-point according to IEEE754 standard.

1) Solution concept

For solving the problem of writing parallel assembly code-generator the following

approaches are applied:

 Templating. Assembly instructions are presented like separate text templates;

 Parallelization. Providing a parallel execution of operations on parallel streams

(only available for DSP-core);

 Optimization of registers usage. The algorithm of selection and purification of the

core registers;

 Optimization of a memory usage. The algorithm of reusing data stored in a

memory;

The source code is presented in the form of a scheme at the VPL programming

language [2, 3]: it describes objects and their relationships (objects graph), actually in a

data-flow-like scheme. In this language model there are number of significant differences

from the classic data-flow, but in the borders of this task it’s not significant. In the

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 28 --

scheme it is described a computational operation of a component (schema object), its

properties, parameters, and links to other objects.

Fig. 1. Sample input scheme program

Example at the Fig.1 includes the following objects:

 grey squares – constants

 spl – “multiplicator” of data

 "*" – object, that multiplies

 "Not" – object thst makes inversion

 “+”– object that specifies computational operation “addition“

 “array” is a representation of memory on a scheme

 “Out” – object that works with memory

Relationships (links) between components are specified with arrows. The scheme is

supplied to the code-generator through the intermediate representation that contains all

options, links, properties and descriptions of scheme components.

Fig. 2. Intermediate representation code of a scheme

At the first stage we parse a scheme and create a linked graph, which contains all the

information about objects and their relationships, properties and parameters.

We construct a schedule for all scheme objects in accordance with the time of their

execution and data dependences. At the next stage we determine a parallel execution

possibility of operations based on available threads and, if necessary, rearrange the

schedule.

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 29 --

Each component maps to a correspondent code template. At the next step we collate

registers in template with registers from register table. If it is necessary we generate the

code of loading data from the memory to registers or unloading the registers to the

memory. As a result, on the output there is a working program for the selected core.

To use the code-generator we have to set several parameters:

 Scheme file;

 Template library (for both cores);

 Operation mode of code-generator (RISC or DSP);

 The starting available register;

 The final available register;

 The starting available memory address;

 Flag of parallelism possibility, “1” для permission, “0” for prohibition (it

doesn’t matter for RISC-core).

2) Templating

Representation in assembly language terms is formed for all types of scheme

elements. Each core has its own instruction set which means that we have to create

templates for both of them. Moreover, the chosen processor MC-24 in DSP-core

command format depends on the operational units (ALU), on which will be performed an

operation. That’s why it’s possible to specify a template for the various operating units

within the core.

An example of a subtraction template for RISC-core:
entity llsub [risc] is

 sub ®out1,®inx1,®iny1

entity llsub end.

An example of the same operation template for the first ALU of DSP-core:
entity llsub [dsp1] is

 sub ®inx1,®iny1,®out1

entity llsub end.

Reserved word "entity" is intended to designate a template in a text file. The next

word is an identifier that denotes the operation at the program scheme.

There is an accessory to the core of the microprocessor in square brackets and

belonging to a group of operands for parallel operation (only for DSP-core). A parallel

execution of two computational operations in one VLIW command of DSP-core is

possible only if they are executed on different operating units (OU). For example it is

impossible to execute operations AND and OR, as they both have to be performed by the

same logical unit LU. Computational operations can be divided into two types - OP1 and

OP2 depending on their operational executing unit. The belonging to different groups

makes it possible to execute two operations in a single command. The first type (OP1)

includes operations, performed by the arithmetic and logical unit (AU, LU), the second

type (OP2) - operations, performed by the multiplier, shifter MS. In the template the

mark "1" denotes the identity of the first type (OP1), the mark "2" respectively to the

second type (OP2).

The word "sub" means the assembly operation command, for which a template is

made. "®inx1" indicates that the parameter is the input register corresponding with

the tag "x" of the scheme operation port and with the number "1". "®iny1" means the

same thing except for the tag (“y” instead of “x”). The tag is required for proper binding

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 30 --

of two components and two operations. "®out1" is a parameter for the output register

with an empty tag and the number "1".

A template can contain the code of any size. For example, the operation “test of

equality” of the two values for RISC-core has the following description:
entity llequal [risc] is

 beq ®in1,®in2,wait0

 li ®out1,0x0

 j loop0

wait0:

 li ®out1,0x1

loop0:

entity llequal end.

3) Parallelism

A parallelization is possible if two operations have different types and do not have

data dependency. The parallelism of the DSP-core is ensured by the existence of multiple

operating units (OU) in a single core. In this example, DSP-core MC-24 has 3 OU. If

there are enough general-purpose registers to perform both operations and they can be

performed in parallel, then the code parallelization occurs. Otherwise, threading does not

occur and commands are executed sequentially. In the DSP-core of MC-24 running of

parallel commands is implemented through the usage of VLIW instructions which can

contain up to three concurrent commands.

An example of instructions to perform two operations simultaneously:
mpss R2,R4,R10 or R8,R6,R12

An example of the same instructions to perform two operations sequentially:
mpss R2,R4,R10

or R8,R6,R2

The command "mpss" belongs to the type OP2 and multiplies two integers in the

"short" format. The command "or" designed to perform a logical OR in the format

"short" belongs to OP1.

There are enough registers in the first case and the flag of parallelism is set to "1",

while in the latter case, there are also enough registers, but the parallel flag is set to the

state "0", hence, a parallelism is not realized.

The system of instruction and flexible address modes allow the DSP-core efficiently

implement signal processing algorithms. Execution time is minimized by the usage of the

software pipeline and high-level instruction implementing several parallel computational

operations and transfers.

4) Optimization of registers

Each microprocessor core, RISC and DSP have a set of general-purpose registers. The

source data and the results of all operations in the ALU are stored in registers. The code-

generator has a configurable number of registers within existing (e.g. registers from the

first to the eighth of sixteen 32-bit registers).

The code-generator creates a virtual table of registers with a specified number of cells

(let’s say 8, as mentioned above), that means that in the beginning of the code-generator

work we have 8 free registers for commands data preparation.

During the processing the code-generator register table is gradually filling and there is

a need to free registers. After giving out all necessary records to a component and

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 31 --

generating its code, we clean the input registers and mark them as free in the table of

registers. When all the registers in the table are marked as busy, we free any register that

is not used now by using a designated algorithm, store its value in memory and mark as

free.

It is possible to use various algorithms for freeing register from the register table. In

the given code-generator the random selection is implemented.

Each register contains its own serial number, the flag of occupation in the current

moment, the flag of possibility of release and the link identifier of connection with

another component.

An example of the register table at the beginning of the generator work:

Fig. 3. Table of registers at the initial state

The "Value" indicates the ordinal number of the register in the table, the flag "Busy"

shows if the register can be released. If the flag is "False" then the register can be

released.

The field "Link" shows what the identification number of a link between the two

components. The "Now" is used to display the status of employment register for the

currently generating command.

An example of the register table during the processing of the generator:

Fig. 4. Table of registers during the work of registers

The "Value" does not change throughout the processing of the generator

The program work is impossible if in the input parameters of the generator the number

of registers is less than the number of registers required to perform each operation. In

other words if you set in the input parameters only two available registers, but there is

some operation that requires three registers, the work of the generator will not be

possible.

5) Work with memory

All objects in the scheme are connected by links. Parameters, properties, and object

described in the link diagram.

Fig. 5 An example of the intermediate representation of the program scheme that specifies interconnections.

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 32 --

A related graph obtained after parsing the scheme contains all the necessary

information about the data interconnection. Links confronted with the addresses in the

internal memory of the processor (either RISC or DSP). In each register in the table of

registers recorded the identification number (ID) of link to know for what input or output

value it was issued. If we have to save a value contained in the register during the work

of the generator, the value is store to the address specified in the link. If we want to get

the value, then we just unload it from memory.

For the DSP-core of the MC-24 processor working with memory is possible only by

usage the address registers. There are eight address registers (A0-A7). To write a value to

a specific address the address must be loaded in the address register:
move 0x00000044,A0

Then value must be written in the memory at that address:
move R2, (A0)

For the usage of offsets in memory addressing there is a set of offset registers (I0-I7).

To use them we need to load an offset value in the offset register:
move 0x00000004,I0

Then add to the address at the time of loading in memory:
move R2, (A0+I0)

The initial memory address of the RISC core is 0x00000000, for DSP-core is

0x80000000. During the development the optimization of address and offset registers is

not implemented yet, but of course, it’s necessary for increasing the efficiency of the

generated code and it is in plans for the further development.

C. Implementation

Using the described approach to the construction of a code-generator, we can get a

working program for RISC-core assembly language or for the DSP-core assembly

(sequential or parallel assembly) language.

Fig. 6. Program’s scheme for code generation

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 33 --

Generated software implementations of the scheme are presented below:

Program for RISC-core Program for DSP-core
li $2,0x2

li $3,0x5

li $4,0x4

sw $2,0x80000014

or $5,$2,$3

mul $3,$2,$2

add $2,$3,$4

sub $3,$5,$2

sw $3,0x80000990

move 0x2,R2

move 0x5,R4

move 0x4,R6

move 0x00000014,A2

move R2,(A2)

mpss R2,R2,R8 or R2,R4,R10

add R8,R6,R4

sub R10,R4,R6

move 0x00000044,A2

move R6,(A2)

Results of execution

8-7=1 8-7=1

The result is written into the register $3

Next to the memory by address 0x80000990

The result is written into the register R6

Next to the memory by address 0x00000044

III. CONCLUSION

The developed approach allows us to simplify the creation of complex programming

constructions by generating parallel assembly code instead of the complicated manual

programming of parallel assembly instructions. The target platform used in the

development is the MC-24 processor-based platform "Multicore". The system of

instructions and flexible address modes of DSP-core ELcore-24™ can effectively

implement the signal processing algorithms. Execution time is minimized through the use

of the software pipeline and high-level instruction implementing several parallel

computational operations and transfers.

We are working on adding functionality to the code-generator to process control

constructions such as conditional branching and loops.

REFERENCES

[1] Signal processor chip 1892ВМ2Я (MC-24). http://multicore.ru/index.php?id=47.

[2] Syschikov A. The parallel programming technology of heterogeneous systems on a chip. Scientific session

SUAI: Sb. paper.: В 3 . P. I. Engineering sciences /SUAI. SPb., 2008, p.133-139.

[3] Ivanov V., Sheynin Y, Syschikov A. Programming model for coarse-grained distributed heterogeneous

architecture Proceedings of the XI Symposium on the issue of redundancy in information systems /Edited by

prof. Kruk Е.А. – SPb: SUAI, 2007, p.246-250.

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 34 --

